

XD3 series PLC

User manual [Instruction]

WUXI XINJE ELECTRIC CO., LTD.

Data No. PC11 20120710 3.3

XD3 series PLC

User manual [Instruction]

1 Preface
2 Programming summary
3 Soft component functions
4 Basic program instructions
5 Applied instructions
6 High speed counter
7 Pulse output
8 Communication functions
9 PID functions
10 C function block
11 Sequences BLOCK
12 Special function instructions
13 Applications
14 Q&A
15 Appendixes

Basic explanation

- Thank you for purchasing Xinje XD3 series PLC.
- This manual mainly introduces XD3 series PLC instructions.
- Please read this manual carefully before using and wire after understanding the content.
- About software and programming instructions, please refer to related manuals.
- Please hand this manual over to operation users.

Notices for users

- Only experienced operator can wire the plc. If any problem, please contact our technical department.
- The listed examples are used to help users to understand, so it may not act.
- Please conform that PLC specifications and principles are suitable when connect PLC to other products.
- Please conform safety of PLC and machines by yourself when use the PLC. Machines may be damaged by PLC errors.

Responsibility declaration

- The manual content has been checked carefully, however, mistakes may happen.
- We often check the manual and will correct the problems in subsequent version.
 Welcome to offer advices to us.
- Excuse us that we will not inform you if manual is changed.

Contact information

If you have any problem about products, please contact the agent or Xinje company.

- Tel: 0086 510-85134136 85123803
- Fax: 0086 510-85111290
- Address: Building 7 fourth floor, No.100, Dicui Rd, Wuxi, China.
- Code: 214072

WUXI XINJE ELECTRIC CO., LTD. copyrights

Do not copy or use manual without written permission. Offenders should be responsible for losses. Please keep all copyrights of our company including practical modules, designed patents and copyrights mentioned in register.

Catalog

1 PROGRAMMING SUMMARY	9
1-1. PLC Features	9
1-2. Programming Language	
1-2-1. Type	10
1-2-2. Alternation	
1-3. Programming mode	11
2 SOFT COMPONENT FUNCTION	13
2-1. SUMMARY OF THE SOFT COMPONENTS	13
2-2. STRUCTURE OF SOFT COMPONENTS	16
2-2-1. Structure of Memory	16
2-2-2. Structure of Bit Soft Components	18
2-3. SOFT COMPONENTS LIST	19
2-3-1. Soft Components List	19
2-4. INPUT/OUTPUT RELAYS (X, Y)	21
2-5. AUXILIARY RELAY (M, HM, SM)	23
2-6. Status Relay (S, HS)	24
2-7. TIMER (T, HT)	25
2-8. COUNTER (C, HC)	29
2-9. Data register (D, HD)	35
2-9-1. Word consist of bits	38
2-9-2. Offset application	40
2-10. Constant	41
2-11. Programming principle	42
3 BASIC PROGRAM INSTRUCTIONS	46
3-1. Basic Instructions List	46
3-2. [LD], [LDI], [OUT]	49
3-3. [AND], [ANI]	50
3-4. [OR], [ORI]	51
3-5. [LDP], [LDF], [ANDP], [ANDF], [ORP], [ORF]	53
3-6. [LDD], [LDDI], [ANDD], [ANDDI], [ORD], [ORDI], [OUTD]	54
3-7. [ORB]	
3-8. [ANB]	57
3-9. [MCS], [MCR]	58
3-10. [ALT]	59
3-11. [PLS] , [PLF]	60
3-12. [SET], [RST]	
3-13. 【CNT】【CNT_D】【DCNT】【DCNT_D】【RST】 FOR THE COUNTERS	
3-14. [TMR], [TMR-A] FOR TIMERS	65
3-15. [END]	66

3-16. [GROUP], [GROUPE]	67
3-17. PROGRAMMING NOTES	68
4 APPLIED INSTRUCTIONS	70
4-1. APPLIED INSTRUCTIONS LIST	70
4-2. READING METHOD OF APPLIED INSTRUCTIONS	
4-3. PROGRAM FLOW INSTRUCTIONS	78
4-3-1. Condition Jump [CJ]	79
4-3-2. Call subroutine [CALL] and Subroutine return [SRET]	
4-3-3. Flow [SET], [ST], [STL], [STLE]	
4-3-4. [FOR] and [NEXT]	88
4-3-5. [FEND] and [END]	
4-4. Data compare function	92
4-4-1. LD Compare [LD]	93
4-4-2. Serial Compare [AND]	95
4-4-3. Parallel Compare [OR]	97
4-5. Data Move Instructions	100
4-5-1. Data Compare [CMP]	101
4-5-2. Data zone compare [ZCP]	102
4-5-3. MOV [MOV]	104
4-5-4. Data block Move [BMOV]	106
4-5-5. Data block Move [PMOV]	108
4-5-6. Fill Move [FMOV]	110
4-5-7. Floating move [EMOV]	112
4-5-8. FlashROM Write [FWRT]	114
4-5-9. Zone set [MSET]	115
4-5-10. Zone reset [ZRST]	117
4-5-11. Swap the high and low byte [SWAP]	118
4-5-12. Exchange [XCH]	120
4-6. DATA OPERATION INSTRUCTIONS	122
4-6-1 Addition [ADD]	123
4-6-2. Subtraction [SUB]	126
4-6-3. Multiplication [MUL]	128
4-6-4. Division [DIV]	130
4-6-5. Increment [INC] & Decrement [DEC]	132
4-6-6. Mean [MEAN]	134
4-6-7. Logic AND [WAND], Logic OR[WOR], Logic Exclusive OR [WXOR]	135
4-6-8. Logic converse [CML]	139
4-6-9. Negative [NEG]	
4-7. SHIFT INSTRUCTIONS	142
4-7-1. Arithmetic shift left [SHL], Arithmetic shift right [SHR]	143
4-7-2. Logic shift left [LSL], Logic shift right [LSR]	145
4-7-3. Rotation shift left [ROL], Rotation shift right [ROR]	
4-7-4. Bit shift left [SFTL]	
4-7-5. Bit shift right [SFTR]	150

4-7-6. Word shift left [WSFL]	
4-7-7. Word shift right [WSFR]	153
4-8. Data Convert	155
4-8-1. Single word integer converts to double word integer [WTD]	156
4-8-2. 16 bits integer converts to float point [FLT]	157
4-8-3. Float point converts to integer [INT]	159
4-8-4. BCD convert to binary [BIN]	161
4-8-5. Binary convert to BCD [BCD]	162
4-8-6. Hex converts to ASCII [ASCI]	163
4-8-7. ASCII convert to Hex.[HEX]	165
4-8-8. Coding [DECO]	167
4-8-9. High bit coding [ENCO]	169
4-8-10. Low bit coding [ENCOL]	171
4-8-11. Binary to Gray code [GRY]	173
4-8-12. Gray code to binary [GBIN]	175
4-9. FLOATING NUMBER OPERATION	176
4-9-1. Floating Compare [ECMP]	177
4-9-2. Floating Zone Compare [EZCP]	179
4-9-3. Floating Add [EADD]	181
4-9-4. Float Sub [ESUB]	183
4-9-5. Float Mul [EMUL]	185
4-9-6. Float Div [EDIV]	187
4-9-7. Float Square Root [ESQR]	189
4-9-8. Sine [SIN]	190
4-9-9. Cosine [SIN]	192
4-9-10. TAN [TAN]	194
4-9-11 . ASIN [ASIN]	196
4-9-12. ACOS [ACOS]	197
4-9-13. ATAN [ATAN]	199
4-10. RTC Instructions	201
4-10-1. Read the clock data [TRD]	201
4-10-2. Write Clock Data [TWR]	203
5 HIGH SPEED COUNTER (HSC)	205
5-1. Functions Summary	206
5-2. HSC Mode	206
5-3. HSC RANGE	208
5-4. HSC Input Wiring	208
5-5. HSC PORTS ASSIGNMENT	209
5-6. READ/WRITE HSC VALUE	211
5-6-1. Read HSC value [DMOV]	211
5-6-2. Write HSC value [DMOV]	213
5-7. HSC RESET MODE	214
5-7-1. HSC no 100-segment single phase [CNT]	214
5-7-2. HSC no 100-segment AB phase [CNT_AB]	215

5-7-3. HSC 100-segment single phase [CNT]	217
5-7-4. HSC 100-segment AB phase [CNT_AB]	218
5-8. AB PHASE COUNTER MULTIPLICATION SETTING	219
5-9. AB Phase mode frequency time setting	220
5-10. HSC EXAMPLE	221
5-11. HSC INTERRUPTION	223
5-11-1. Interruption instruction	223
5-11-2. Interruption flag of HSC	224
5-11-3. HSC interruption cycle mode	227
5-11-4. Application of HSC interruption	228
6 PULSE OUTPUT	235
6-1. FUNCTIONS SUMMARY	236
6-2. Pulse Output Types and Instructions	236
6-2-1. Multi-segment pulse output [PLSR]	236
6-2-2. Variable frequency pulse output [PLSF]	266
6-2-3. Mechanical zero return [ZRN]	269
6-2-4. Pulse number immediate renovation [PLSMV]	276
6-3. OUTPUT WIRING	278
6-4. RELATIVE COILS AND REGISTERS OF PULSE OUTPUT	279
7 COMMUNICATION FUNCTION	296
7-1. SUMMARY	297
7-1-1. COM port	297
7-1-2. Communication parameters	299
7-2. MODBUS COMMUNICATION	303
7-2-1. Function	303
7-2-2. Change of Modbus handling mode	304
7-2-3. Address	305
7-2-4 Modbus data format	312
7-2-5. Communication Instructions	319
7-2-6. Communication application	331
8 PID CONTROL FUNCTION	333
8-1. Brief Introductions of the Functions	333
8-2. Instruction Form	334
8-3. PARAMETERS SETTING	337
8-3-1. Register and their functions	338
8-3-2. Parameters Description	341
8-4. Auto Tune Mode	343
8-5. ADVANCED MODE	346
8-6. APPLICATION OUTLINES	347
8-7. APPLICATION	348
9 C LANGUAGE FUNCTION BLOCK	349

9-1. Summary	349
9-2. Instruction Format	349
9-3. OPERATION STEPS	351
9-4. IMPORT AND EXPORT THE FUNCTIONS	354
9-5. EDIT THE FUNC BLOCKS	356
9-6. PROGRAM EXAMPLE	358
9-7. APPLICATION	361
9-8. FUNCTION TABLE	363
10 SEQUENCE BLOCK	366
10-1. CONCEPT OF THE BLOCK	367
10-2. CALL THE BLOCK	368
10-2-1. Add the BLOCK	368
10-2-2. Move the BLOCK	371
10-2-3. Delete the BLOCK	372
10-2-4. Modify the BLOCK	373
10-3. EDIT THE INSTRUCTION OF THE BLOCK	
10-3-1. Command item	375
10-3-2. Pulse Item	377
10-3-3. Wait Item	378
10-3-4. Module Read and Write (FROM/TO) instruction	379
10-4. RUNNING FORM OF THE BLOCK	380
10-5. BLOCK INSTRUCTION EDITING RULES	382
10-6. BLOCK RELATED INSTRUCTIONS	385
10-6-1. Instruction explanation	385
10-6-2. The timing sequence of the instructions	388
10-7. BLOCK FLAG BIT AND REGISTER	392
11 SPECIAL FUNCTION INSTRUCTIONS	393
11-1. Pulse Width Modulation [PWM]	394
11-2. Precise Timing [STR]	395
11-3. Interruption [EI], [DI], [IRET]	398
11-3-1 . External Interruption	398
11-3-2. Timing Interruption	402
12 APPLICATION EXAMPLE	405
12-1. PULSE OUTPUT APPLICATION	405
12-2. MODBUS COMMUNICATION APPLICATION	408
13 COMMON QUESTIONS AND ANSWERS	412
APPENDIX SPECIAL SOFT ELEMENT SCHEDULES	434
APPENDIX 1. SPECIAL AUXILIARY RELAY SCHEDULE	434
APPENDIX 2. SPECIAL DATA REGISTER SCHEDULE	445
APPENDIX 3. SPECIAL FLASH REGISTER SCHEDULE	468

1 Programming Summary

XD3 series PLC accept the signal and execute the program in the controller, to fulfill the requirements of the users. This chapter introduces the PLC features, two kinds of programming language and etc.

1-1. PLC Features

Programming Language

XD3 series PLC support two kinds of program language, instruction and ladder chart, the two kinds of language can convert to each other.

Security of the Program

To avoid the stolen or wrong modifying of user program, we encrypt the program. When uploading the encrypted program, it will check in the form of password. This can protect the user copyright; meanwhile, it limits the downloading, to avoid change program by mistake.

XD3 series added new register FS. (For different XD3 models, please check the Data monitor in XDPpro software for FS register range, common range is FS0~FS47). FS value can be modified but cannot be read through Modbus instruction. FS cannot be compared to register but only constant in XDPpro software. The value cannot be read. FS is used to protect the user's copyright. The register D, HD... can replace by FS.

Program comments

When the user program is too long, the comments of program and soft components are necessary in order to change the program easily later.

Offset Function

Add offset appendix (like X3[D100], M10[D100], D0[D100]) after coils, data registers can make indirect addressing. For example, when D100=9, X3[D100] =X[3+9]=X14; M10[D100]=M19, D0[D100]=D9

Rich Basic Functions

- XD3 series PLC has enough basic instructions including basic sequential control, data moving and comparing, arithmetic operation, logic control, data loop and shift etc.
- XD3 series PLC also support interruption, high speed pulse, frequency testing, precise time, PID control and so on.

C Language Function Block

XD3 series PLC support C language; users can call the C program in ladder chart. This function improves the programming efficiency.

Stop PLC when reboot

XD3 series PLC support "Stop PLC when reboot" function. When there is a serious problem during PLC running, this method can stop all output immediately. Besides, if the COM port parameters are changed by mistake, this function can help PLC connect to the PC.

Communication Function

XD3 series PLC has many communication modes, such as Modbus-RTU, Modbus-ASCII.

When the COM port parameters are changed, the new parameters will be valid immediately without restarting the PLC.

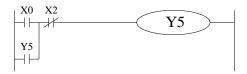
Wait time can be added before Modbus instructions.

1-2. Programming Language

1-2-1. Type

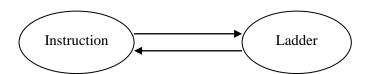
XD3 series PLC support two types of programming language:

Instruction


Make the program with instructions directly, such as "LD", "AND", "OUT" etc. This is the basic input form of the programs, but it's hard to read and understand;

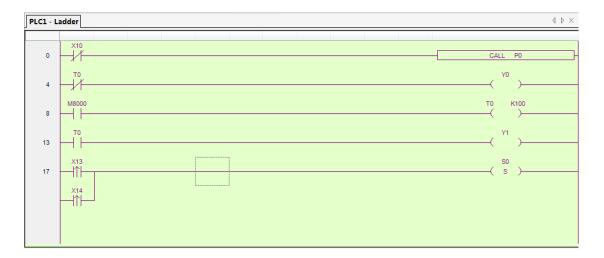
E.g.: step	instruction	operand
0	LD	X000
1	OR	Y005
2	ANI	X002
3	OUT	Y005

Ladder chart

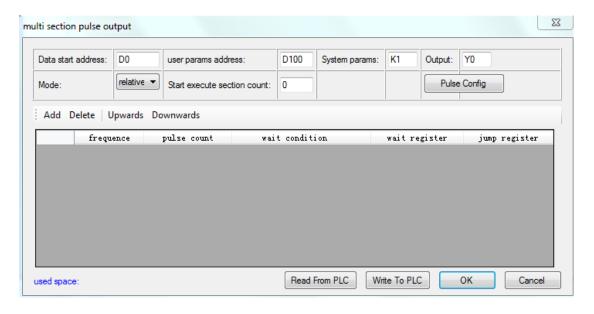

Make sequential control graph with sequential control signal and soft components. This method is called "Ladder chart". This method uses coils and contactors to represent sequential circuit. The ladder chart is easy to understand and can be used to monitor the PLC status online.

E.g.:

1-2-2. Alternation


The two kinds of programming language can be transformed to each other.

1-3. Programming mode


Direct Input

The two kinds of programming language can be input directly in the editing window. The ladder chart window has hint function which improves the programming efficiency greatly.

Instruction Configuration

Some instruction is complicated to use, like pulse output, PID etc. XDPPro software has the configuration window for these special instructions. User just needs to input parameters in the configuration window without remembering complicated instructions. The following window is multi section pulse output.

For the details of instruction configuration, please refer to XD3 series PLC user manual $\[$ software part $\]$.

2 Soft Component Function

In chapter 1, we briefly introduce the programming language. However, the most important element in a program is the operands. These elements include the relays and registers. In this chapter, we will describe the functions and using methods of these relays and registers.

2-1. Summary of the Soft Components

There are many relays, timers and counters inside PLC. They all have countless NO (Normally ON) and NC (Normally Closed) contactors. Connect these contactors with the coils will make a sequential control circuit. Next we will introduce these soft components.

Input Relay (X)

• The functions of input relays

The input relays are used to receive the external ON/OFF signal, the sign is **X**.

- Address Assignment Principle
 - In each basic unit, X address is in the form of octal, such as X0~X7, X10~X17 ...
 - ➤ The extension module address: module 1 starts from X10000, module 2 starts from X10100... Up to 10 extension modules can be connected to the main unit.
 - Extension BD board: BD 1 starts from X20000; BD 2 starts from X20100.... Up to 3 BDs can be connected to the main unit.
- Using notes
 - The input filter of input relay is digital one; user can change the filter parameters.
 - There are enough input relays in the PLC. The input relay whose address is more than input points can be seemed to auxiliary relay.

Output Relay (Y)

• Function of the output relays

Output relays are the interface to drive the external loads, the sign is Y;

- Address Assignment Principle
- In each basic unit, Y address is in the form of octal, such as Y0~Y7, Y10~Y17 ...
- ➤ The extension module address: module 1 starts from Y10000, module 2 starts from Y10100... Up to 10 extension modules can be connected to the main unit.
- Extension BD board: BD 1 starts from Y20000; BD 2 starts from Y20100.... Up to 3 BDs can be connected to the main unit.

- Using notes
- There are enough output relays in the PLC. The output relay whose address is more than output points can be seemed to auxiliary relay.

Auxiliary Relays (M, HM)

Function of Auxiliary Relays

Auxiliary relays is internal relays of PLC, the sign is M and HM;

Address assignment principle

In basic units, assign the auxiliary address in decimal form

- Using notes
 - ➤ This type of relays are different from the input/output relays, they can't drive external load and receive external signal, but only be used in the program;
 - Retentive relays can keep its ON/OFF status when PLC power OFF;

Status Relays (S, HS)

Function of status relays

Used as relays in Ladder, the sign is S, HS.

Address assignment principle

In basic units, assign the address in decimal form.

Using notes

If it is not used as operation number, they can be used as auxiliary relays, programming as normal contactors/coils. Besides, they can be used as signal alarms, for external diagnose.

Timer (T, HT)

• Function of the timers

Timers are used to accumulate the time pulse like 1ms, 10ms, 100ms etc. when reach the set value, the output contactors acts, represent sign is T and HT.

Address assignment principle

In basic units, assign the timer address in decimal form. Please refer to chapter 2-2 for details.

• Time pulse

There are three timer pulses: 1ms, 10ms, and 100ms. For example, 10ms means accumulate 10ms pulses.

Accumulation/not accumulation

The timer has two modes: accumulation timer means even the timer drive coil is OFF, the timer will still keep the current value; while the not accumulation timer means when the accumulation value reaches the set value, the output acts, the accumulation value reset to 0.

Counter (C, HC)

According to different application purposes, the counters contain different types:

- For internal counting (for general using/power off retentive usage)
 - ➤ 16 bits counter: for increment count, the count range is 1~32,767
 - ➤ 32 bits counter: for increment count, the count range is 1~2,147,483,647
 - ➤ These counters are for PLC internal signal. The response speed is one scan cycle or longer.
- For High Speed Counting (Power-off retentive)
 - ➤ 32 bits counter: the count range is -2,147,483,648~ +2,147,483,647 (Single phase increment count, AB phase count). For special input terminals.
 - ➤ The high speed counter will not be affected by PLC scanning period. For increment mode, it can count max 80KHz pulses; for AB phase mode, it can count max 50KHz pulses.
- Address assignment principle

In basic units, assign the timer address in decimal form.

Data Register (D, HD)

Function of Data Registers

Data Registers are used to store data, the sign is D and HD.

Address assignment principle

The data registers in XD3 series PLC are 16 bits (the highest bit is sign bit), combine two data registers together is for 32 bits (the highest bit is sign bit) data processing.

Using notes

Same to other soft components, data registers also have common type and power-off retentive type.

FlashROM Register (FD)

Function of FlashROM registers

FlashROM registers are used to store data, the sign is FD.

Address assignment principle

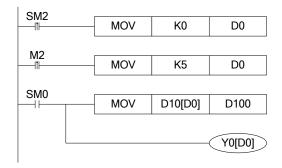
In basic units, FlashROM registers address is in form of decimal;

Using notes

Even the battery powered off, this area can remember the data. So this area can store important parameters. FlashROM can be writen for about 1,000,000 times, and it takes time when writing. Frequently writing can cause permanent damage for FD.

Constant (B) (K) (H)

 B means Binary, K represents Decimal, H represents Hexadecimal. They are used to set timers and counters value, or operands of application instructions. For example hex FF will be HFF.


2-2. Structure of Soft Components

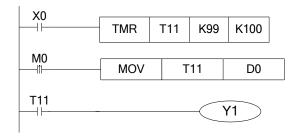
2-2-1. Structure of Memory

In XD3 series PLC, there are many registers. Besides D, HD, FlashROM registers, we can also combine bit to register.

Data Register D, HD

- For common use, 16 bits
- For common use, 32 bits (combine two continuous 16-bits registers)
- For power off retentive use, cannot modify the retentive range
- For special use, occupied by the system, can't be used to common instruction parameters
- For offset use (indirect assignment)
 - Form: Dn[Dm], HDn[Dm], Xn[Dm], Yn[Dm], Mn[Dm], etc.

When D0=0, D100=D10, Y0 is ON.


When M2 turns from OFF to ON, D0=5, then D100=D15, Y5 is ON.

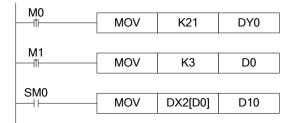
Therein, D10[D0]=D[10+D0], Y0[D0]=Y[0+D0].

- The word offset combined by bit: DXn[Dm] represents DX[n+Dm].
- The soft components with offset, the offset can represent by soft component D, HD.

Timer T, HT/Counter C, HC

- For common usage, 16 bits, represent the current value of timer/counter;
- For common usage, 32 bits, (combine two continuous 16 bits registers)
- To represent them, just use the letter+address method, such as T10, C11, HT10, HC11. E.g.

In the above example, MOV T11 D0, T11 represents word register;


LD T11, T11 represents bit register.

FlashROM Register FD

- For power off retentive usage, 16 bits
- For power off retentive usage, 16 bits, (combine two continuous 16 bits registers)
- For special usage, occupied by the system, can't be used as common instruction parameters

Register combined by bits

- For common usage, 16 bits, (combine 16 bits)
- The soft components which can be combined to words are: X, Y, M, S, T, C, HM, HS, HT, HC.
- Format: add "D" in front of soft components, like DM10, represents a 16-bits register from M10~M25
- Get 16 bits beginning from DXn, cannot beyond the soft components range;
- The word combined by bits cannot do bit addressing;
 E.g.:

- ➤ When M0 changes from OFF to ON, the value in the word which is combined by Y0~Y17 equals to 21, i.e. Y0, Y2, Y4 become ON.
- ▶ Before M1 activates, if D0=0, DX2[D0] represents a word combined by X2~X21.
- ➤ If M1 changes from OFF to ON, D0=3, then DX2[D0] represents a word combined by X5~X24

2-2-2. Structure of Bit Soft Components

Bit soft components include X, Y, M, S, T, C, HM, HS, HT, HC. Besides, the bit of the register also can be used as bit sofst component.

Relay

- Input Relay X, octal form
- Output Relay Y, octal form
- Auxiliary Relay M, HM, S, HS; decimal form
- Auxiliary Relay T, HT, C, HC, decimal form. The represent method is same to registers, so we need to judge if it's word register or bit register according to the instruction.

The Bit of register

- Composed by bit of register, support register D
- Represent method: Dn.m (0≤m≤15): for example D10.2 means the second bit of D10
- The represent method of bit with offset: Dn[Dm].x
- Bit of register can't compose to word soft component again;
 E.g.:

- ➤ D0.4 means when the fourth bit of D0 is 1, set Y0 ON.
- > D5[D1].4 means bit addressing with offset, if D1=5, then D5[D1] means the fourth bit of D10

2-3. Soft Components List

2-3-1. Soft Components List

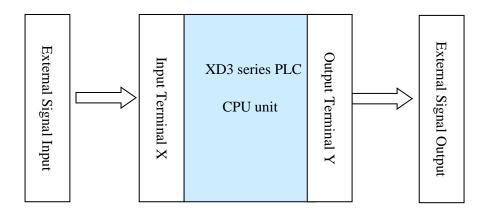
The soft components range of XD3 main unit and extension module:

Soft	Name			Points			
-nent	Name	16	16 32 60		16	32	60
X	Input	X0~X7	X0~X21	X0~X43	8	18	36
Y	Output	Y0~Y7	Y0~Y15	Y0~Y27	8	14	24
		X10000~10	0077 (extension	n module 1)		1	I
X	Input *3		•••••			640	
		X10900~10	977 (extension	module 10)			
		Y10000~10					
Y	Output **3					640	
		Y10900~10977 (extension module 10)					
		X20000~	on BD 1)				
X	Input *4					192	
		X20200~20277 (extension BD 3)					
		Y20000~					
Y	Output *4					192	
		Y20200~20277 (extension BD 3)					

M		M0~M7999	8000
НМ	Internal relay	HM0~HM959 ^{*1}	960
SM		(Special use) SM0~SM2047 ^{*2}	2048
S	Flow	S0~S1023	1024
HS	Flow	HS0~HS127 ^{**} 1	128
Т		T0~T575	576
НТ	Timer	HT0~HT95 ^{*1}	96
ET		(precise time) ET0~ET31	16
С		C0~C575	576
НС	Counter	HC0~HC95 ^{*1}	96
HSC		(high speed counter) HSC0~HSC31	16
D		D0~D7999	8000
HD	Data register	HD0~HD999*1	1000
SD	Duta register	(special use) SD0~SD2047	2048
HSD		(special use) HSD0~HSD499 ^{*2}	500
FD	FlashROM	FD0~FD6143	6144
SFD	register	(special use) SFD0~SFD1999*2	2000
FS	Special classified register FS0~FS47		16
	Main unit	ID0~99	100
		ID10000~10099 (extension module 0)	
	Extension module		1000
ID ^{**5}		ID10900~10999 (extension module 0)	
		ID20000~20099 (extension BD 0)	
	Extension BD		300
		ID 20200~20299 (extension BD 0)	
QD [*] 6	Main unit	QD0~99	100

		QD10000~10099 (extension module 0)	
	Extension module		1000
		QD10900~10999 (extension module 0)	
		QD20000~20099 (extension BD 0)	
	Extension BD		300
		QD 20200~20299 (extension BD 0)	
SEM	Special coil for Wait instruction	SEM0~SEM31	32

- **※**1: Power-off retentive range, the range cannot be changed.
- *2: For system special use (not power-off retentive), they cannot be used for other way. Please refer to appendix Special soft components.
- *3: Extension module I/O addresses assignment (octal), up to 10 modules can be extended.
- *4: Extension BD I/O addresses assignment (octal), up to 3 BDs can be extended.
- %5: Analog input addresses.
- **※**6: Analog output addresses.

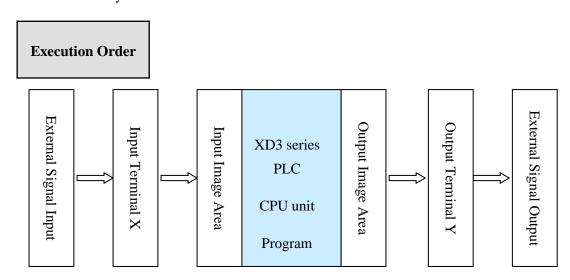

2-4. Input/output relays (X, Y)

Number List

XD3 series PLC input/output are all in octal form, each series numbers are listed below:

Series	Name		I/O numbers]	I/O points	
		16	32	60	16	32	60
XD3	X	X0~X7	X0~X21	X0~X43	8	18	36
	Y	Y0~Y7	Y0~Y15	Y0~Y27	8	14	24

Function



Input Relay X

- PLC input terminals are used to recive the external signal. the input relays are optocoupler to connect PLC and input terminals
- The input relays which are not connected with external devices can be seemed to fast internal relays

Output Relay Y

- PLC output terminals can be used to send signals to external loads. Inside PLC, output relay's external output contactors (including relay contactors, transistor's contactors) connect with output terminals
- The output relays which are not connected with external devices can be seemed to fast internal relays

Input processing

- ➤ Before PLC executing the program, read every input terminal's ON/OFF status to the image area.
- When the program is running, even the input changed, the content in the input image area will not change until the next scanning period coming.

Output processing

- After running all the instructions, transfer the ON/OFF status of output Y image area to the output lock memory area. This will be the actual output of the PLC.
- ➤ The output contactors will delay the action according to the output soft components reponse.

2-5. Auxiliary Relay (M, HM, SM)

Number List

The auxiliary relays in XD3 series PLC are all in decimal form, please see the following table:

Series	Name	Range			
		Common	Power-off retentive	Special	
XD3	M	M000~M7999	HM0-HM959	SM0~SM2047	

In PLC, auxiliary relays are used frequently. This type of relay's coil is same to the output relay. They are driven by soft components in PLC;

Auxiliary relays M and HM have countless normally ON/OFF contactors. They can be used freely, but this type of contactors can't drive the external loads.

• For common use

- This type of auxiliary relays can be used only as normal auxiliary relays. I.e. if power supply suddenly shut down during the running, the relays will be off.
- Common usage relays can't be used for power off retentive, but the zone can be modified;

• For Power Off Retentive Use

- ➤ The auxiliary relays for power off retentive usage, even the PLC is OFF, they can keep the ON/OFF status.
- Power off retentive zone cannot be modified;

Power off retentive relays are usually used to memory the status before stop the power, then when power the PLC on again, the status can run again;

For Special Usage

- > Special relays are some relays which are defined with special meanings or functions, start from SM0.
- There are two functions for special relays, first is used to drive the coil, the other type is for special running.

E.g.: SM2 is the initial pulse, activates only at the moment of start SM34 is "all output disabled"

> Special auxiliary relays can't be used as normal relay M;

2-6. Status Relay (S, HS)

Address List

Status relays addresses are in form of decimal, the address are shown below:

Series	Name	Range	
		Common	Power-off retentive
XD3	S	S000~S1023	HS0~HS127

Function

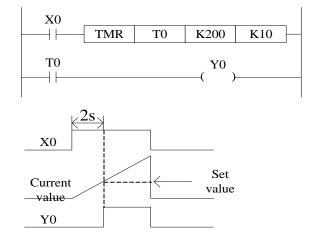
Status relays S and HS are very import in ladder program; they are used together with instruction "STL" in the flow. The flow can make the program clear and easy to modify.

- For common use
 After shut off the PLC power, S relays will be OFF
- For Power Off Retentive Use
 - ➤ HS relays can keep the ON/OFF status even PLC power is off
- The status relays also have countless "normally ON/OFF" contactors. So users can use them freely in the program

2-7. Timer (T, HT)

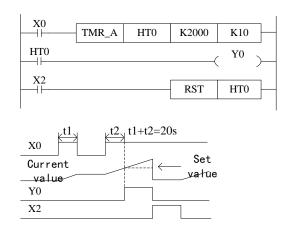
Address List

The timer addresses are in the form of decimal; please see the following table:


Series	Name	Range			
		Common	Power-off retentive	Precise timer	
	T				
XD3	НТ	T0~T575	HT0~HT95	ET0~ET31	
	ET				

Function

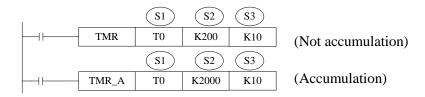
The timers accumulate the 1ms, 10ms, 100ms pulse, the output contactor activates when the accumulation reaches the set value;


TMR instruction is for common timers. The set value can be constant (K) or data register (D).

Normal type

If X0 is ON, then T0 accumulates 10ms pulse based on the current value; when the accumulation value reaches the set value K200, the timer output activates. I.e. the output activates 2s later. If X0 is OFF, the timer resets, the output resets;

Accumulation type


If X0 is ON, HT0 accumulates the 10ms pulse based on the current value. When the accumulation value reaches the set value K2000, the timer output activates.

If X0 is suddenly OFF during timer working, the timer value will be retentive. Then X0 is ON again, the timer will continue working.

When X2 is ON, the timer and output will be reset.

Appoint the set value

1. Instruction format

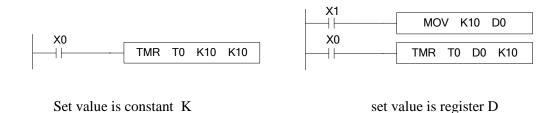
Reset the timer and output:

S1: timer (T0, HT10)

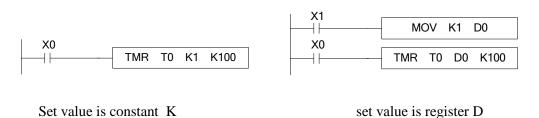
S2: set time (such as K100)

S3: time unit (K1—1ms, K10—10ms, K100—100ms)

- ◆ Power-off not retentive, not accumulation
- (1) Time unit is 1ms, set time is K100, the real time is 1ms *100=0.1s

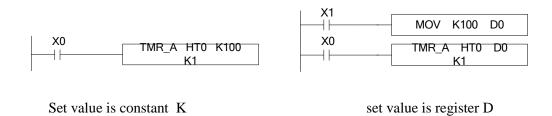


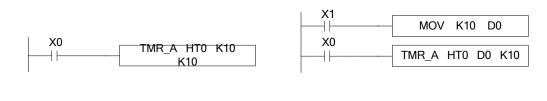
Set value is constant K


set value is register D

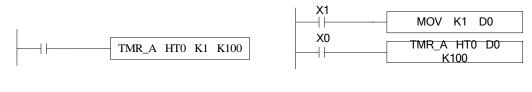
set value is register D

(2) Time unit is 10ms, set time is K10, the real time is 10ms*10=0.1s


(3) Time unit is 100ms, set time is K1, the real time is 100ms*1=0.1s

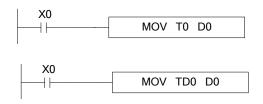

◆ Power-off retentive, accumulation

Set value is constant K

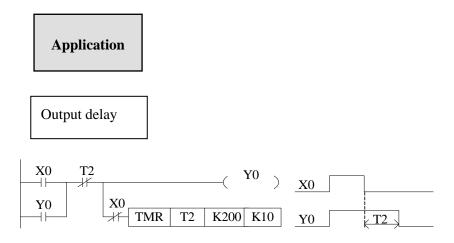

(1) Time unit is 1ms, set time is K100, the real time is 1ms *100=0.1s

(2) Time unit is 10ms, set time is K10, the real time is 10ms*10=0.1s

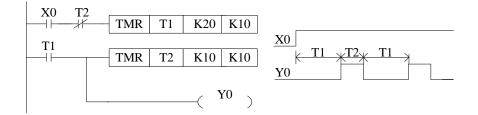
(3) Time unit is 100ms, set time is K1, the real time is 100ms*1=0.1s


Set value is constant K

set value is register D


- 2. Notes
- (1) The TMR is not accumulation timer instruction; TMR_A is accumulation timer instruction.
- (2) The time unit includes K1, K10 and K100. Please don't write other time unit otherwise the timer instruction will not run.

The time value is stored in register TD. The working mode of timer T0~T575 and HT0~HT95 are 16-bits linear increasing. The time range is from 0 to 32767. When the time value in TD reaches 32767, the timer will stop timing and keep the status.



The two instructions are the same. In the first instruction, T0 is seemed to TD0.

X0 is ON, output Y0. X0 changes from ON to OFF, delay 2s then cut off Y0.

X0 is ON, Y0 begin to twinkle. T1 is Y0-OFF time; T2 is Y0-ON time.

2-8. Counter (C, HC)

Number list

The counter addresses are in decimal; please see the following table for details:

Series	Name	Range		
		16-bit common	16-bit power-off retentive	32-bit increment
XD3	C HC HSC	C0~C575	НС0~НС95	HSC0~HSC30

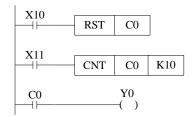
The counter range:

Counter type	Explanation		
16/32 bits up/down counter	C0~C575 HC0~HC95 (32-bits counter occupies two registers, the counter address must be even number)		
High speed counter	HSC0~HSC30 (HSC0,HSC2HSC30) (each counter occupies two registers, the counter address must be even number)		

- ※ 1: Please refer to chapter 5 for details of high speed counter.
- * 2: XD3 series counters can be 16 or 32 bits count up/down mode. The mode is appointed by the instruction.

Counter features

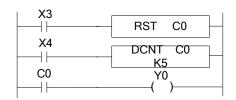
Item	16-bit counter	32-bit counter	
Count direction Count down/up		Count up/down	
Set value	0~32,767	-2,147,483,648~+2,147,483,647	
Set value type	Constant K or register	Constant K or a couple of registers	
Count value	The value will not change when reaching the max or min value	The value will not change when reaching the max or min value	
Output Keep the state for coun up		Reset for count down	
Reset	Run RST instruction, the counter and output will be reset		
Present count value register 16-bit		32-bit	

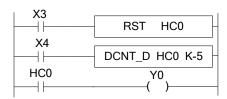

Function

The soft component will appoint the type of counter: common counter or power-off retentive counter.

16-bit common counter and power-off retentive counter

The set value range of 16-bit count-up counter is $K1\sim K32,767$ (decimal). K0 and K1 have the same function. They mean the counter output will act at the first counting.


If the PLC power supply is cut off, common counter value will be reset. The power-off retentive counter value will be kept.



- The counter C0 increases one when the X11 drives once. When C0 value reaches 10, the output acts. Then X11 drives again, C0 will continue increase one.
- If X10 is ON, the C0 and output will be reset.
- The counter set value can be constant K or register. For example, if D10 is 123, the set value is equal to K123.

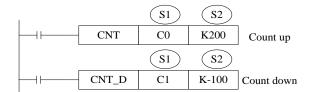
32-bit common counter and power-off retentive counter

The set value range of 32-bit count-up/down counter is $K+2,147,483,648\sim K-2,147,483,647$ (decimal). The count direction is set through instruction.

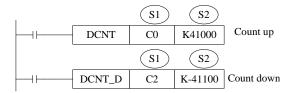
Common count up counter

power-off retentive count

down counter


- If X3 is ON, the counter and output will be reset.
- For power-off retentive counter, the present counter value, output state will be kept after power supply is off.
- 32-bit counter can be seemed to 32-bit register.

Counter set value


The set value contains two conditions: 16-bit and 32-bit. The counter types include common counter (C) and power-off retentive counter (HC).

Count instruction:

16-bit counter:

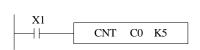
32-bit counter:

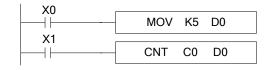
Reset instruction:

16-bit counter:

32-bit counter:

S1: counter (such as C0, HC10)

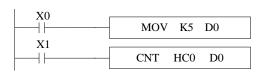

S2: counter set value (such as K100)


The counter is different from XC series. They don't have 16-bit and 32-bit type. The type is set through instruction.

♦ 16-bit counter (common, count up)

 $\langle\!\langle$ set value is constant $K\rangle\!\rangle$

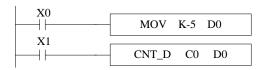
«set value is register »



◆ 16-bit counter (power-off retentive, count up)

«set value is constant K»

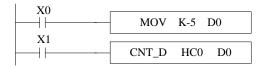
«set value is register »



◆ 16-bit counter (common, count down)

«set value is constant K»

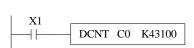
«set value is register »

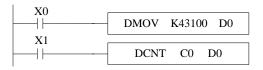


◆ 16-bit counter (power-off retentive, count down)

«set value is constant K»

«set value is register »

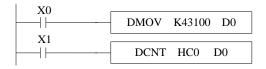




◆ 32-bit counter (common, count up)

«set value is constant K»

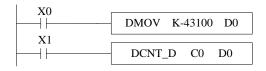
«set value is register »



◆ 32-bit counter (power-off retentive, count up)

«set value is constant K»

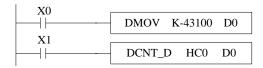
«set value is register »



◆ 32-bit counter (common, count down)

«set value is constant K»

«set value is register »



◆ 32-bit counter (power-off retentive, count down)

«set value is constant K»

«set value is register »

Count value

16-bit count up counter

The count range is $0\sim32767$. When the count value reaches 32767, the counter stops working and keeps the state.

16-bit count down counter

The count range is -32768~0. When the count value reaches -32768, the counter stops working and keeps the state.

32-bit count up/down counter

The count range is $-2,147,483,648 \sim +2,147,483,647$. When the count value reaches K2,147,483,647, it will become K-2,147,483,648. When the count value reaches K-2,147,483,648, it will become K2,147,483,647. The ON/OFF state of counter will change with the count value.

The two instructions have the same function. C0 is seemed to register in the first instruction.

```
X0 CNT C0 K1000
```

The highest frequency of this instruction is related to the filter parameter and PLC scanning period. The max frequency it can count will be 500Hz. If the frequency is larger than 500Hz, please use high speed counter HSC0-HSC30.

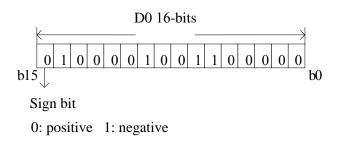
```
SM0 | CNT HSC0 K888888
```

High speed counter HSC0: the frequency input terminal is X0. The high speed counter will not be affected by input filter response delay time and PLC scanning period. Please refer to chapter 5 for details.

2-9. Data register (D, HD)

The data register of XD3 series PLC is in decimal format. Please see the following table:

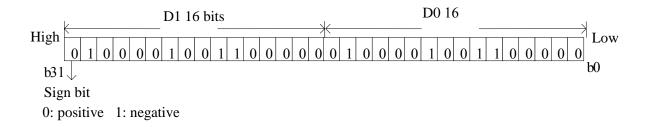
Series	Name	Range			
		Common	Power-off retentive	Special	Special and power-off retentive
XD3	D	D0~D7999	HD0~HD999	SD0~SD2047	HSD0~HSD499


Structure

Data register is used to store data; it includes 16 bits(the higheset bit is sign bit) and 32 bits. (32 bits contains two registers, the highest bit is sign bit)

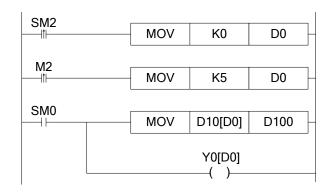
16 bits

16-bits register range is $-32,768 \sim +32,767$


Read and write the register data through instruction or other device such as HMI.

32 bits

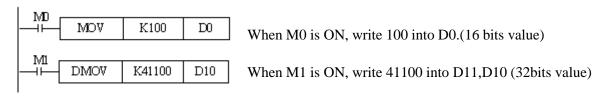
32 bits value is consisted of two continuous registers. The range is $-2147483648 \sim 2147483647$. For example: (D1 D0) D1 is high 16 bits, D0 is low 16 bits.


For 32 bits register, if the low 16-bits are appointed, such as D0, then D1 will be the high 16 bits automatically. The address of low 16-bits register must be even number.

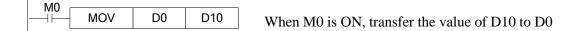
- Normal type
 - ➤ When write a new value in the register, the former value will be covered.
 - When PLC changes from RUN to STOP or STOP to RUN, the value in the register will be cleared.
- Retentive type
 - ➤ When PLC changes from RUN to STOP or power off, the value in the register will be retained.
 - The retentive register range cannot be changed.
- Special type
 - > Special register is used to set special data, or occupied by the system.
 - Some special registers are initialized when PLC is power on.
 - ➤ Please refer to the appendix for the special register address and function.
- Used as offset (indirect appoint)
 - Data register can be used as offset of soft element.
 - Format : Dn[Dm], Xn[Dm], Yn[Dm], Mn[Dm].
 - ➤ Word offset: DXn[Dm] means DX[n+Dm].

➤ The offset value only can be set as D register.

When D0=0, D100=D10, Y0 is ON;


When M2 is from OFF→ON, D0=5, D100=D15, Y5 is ON.

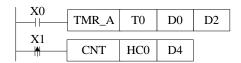
D10[D0]=D[10+D0], Y0[D0]=Y[0+D0].



Data register D can deal with many kinds of data.

Data storage

• Data transfer



• Read the timer and counter

When M0 is ON, move the value of C10 to D0.

• As the set value of timer and counter

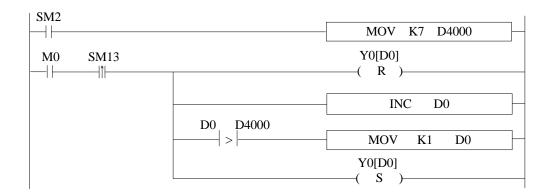
When X0 is ON, T10 starts to work, T0 will set ON when D0 value is equal to timer value, time unit is D2.

X1 is ON, HC0 starts to work, HC0 will set ON when D4 value is equal to counter value.

2-9-1. Word consist of bits

One of the coils from X0 to X17 is ON, Y0 will be ON.

Programming method one:


X0	Y0
X1	
X2	
X3	
X4	
X5	
X6	
X7	
X10	
X11	
X12	
X13	
X14	
X15	
X16	
X17	

Programming method two: (application of word consists of bits)

2-9-2. Offset application

Application 1:

When M0 is ON, the output from Y1 to Y7 will be ON one by one. D0 is offset address. If there are many output points, M can replace Y.

Application 2:

When M0 is ON, read the ID10000 value every second and store in the register starting from D4000 (amounts is 50 registers). D0 is offset address.

```
M0 SM13

| MOV ID10000 D4000[D0] |

INC D0

D0 K50

MOV K1 D0
```

2-10. Constant

Data process

XD3 series PLC has the following 5 number systems.

• DEC: DECIMAL NUMBER

- The preset number of counter and timer (constant K)
- The number of Auxiliary relay M, HM; timer T, HT; counter C, HC; state S, HS; register D, HD.
- > Set as the operand value and action of applied instruction (constant K)

• HEX: HEXADECIMAL NUMBER

> Set as the operand value and action of applied instruction (constant H)

• BIN: BINARY NUMBER

➤ Inside the PLC, all the numbers will be processed in binary. But when monitoring on the device, all the binary will be transformed into HEX or DEC.

• OCT: OCTAL NUMBER

➤ XD3 series PLC I/O relays are in octal. Such as [X0-7, X10-17,....X70-77].

• BCD: BINARY CODE DECIMAL

- ➤ BCD uses 4 bits binary number to represent decimal number 0-9. BCD can be used in 7 segments LED and BCD output digital switch
- Other numbers (float number)

XD3 series PLC can calculate high precision float numbers. It is calculated in binary numbers, and display in decimal numbers.

Display

PLC program should use K, H to process values. K means decimal numbers, H means hex numbers. Please note the PLC input/output relay use octal address.

• Constant K

K is used to display decimal numbers. K10 means decimal number 10. It is used to set timer and counter value, operand value of applied instruction.

• Constant H

H is used to display hex numbers. HA means decimal number 10. It is used to set operand value of applied instruction.

• Constant B

B is used to display binary numbers. B10 means decimal number 2. It is used to set operand value of applied instruction.

2-11. Programming principle

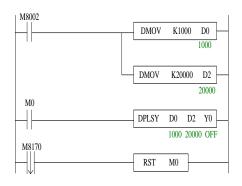
• Sign P and I

P is the program sign for condition and subprogram jump.

I is the program sign for interruption (external interruption, timer interruption, high speed counter interruption, precise time interruption...).

P and I addresses are in decimal. Please refer to the following table:

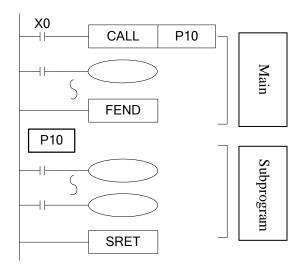
Series	Sign	Address
XD3	P	P0~P9999


			Address			
Model	Model Sign	External interruption				
		Input	Rising interruption	Falling interruption	Timer interruption	
		X2	10000	I0001		
	XD3-16 I	X3	I0100	I0101	There are 20 timer	
XD3-16		X4	I0200	I0201	interruptions. From I40** to I59**. "**" means the timeof	
	X5	I0300	I0301	timer interruption, the unit is ms.		
	X6	I0400	I0401	1115.		
		X7	I0500	I0501		

		Address			S
Model	Model Sign	External interruption		otion	
		Input	Rising interruption	Falling interruption	Timer interruption
		X2	10000	I0001	
		X3	I0100	I0101	
	XD3- 32/60 I	X4	I0200	I0201	
		X5	I0300	I0301	There are 20 timer
		X6	I0400	I0401	interruptions. From I40** to I59**. "**" means the timeof
32/60		X7	I0500	I0501	timer interruption, the unit is
		X10	I0600	I0601	ms.
		X11	I0700	I0701	
		X12	I0800	I0801	
		X13	10900	I0901	

Sign P

P is usually used in flow; it is used together with CJ (condition jump), CALL (call subprogram), etc.


Condition Jump CJ

If coil X0 is ON, jump to the program after P1;

If the coil X0 is not ON, do not execute jump action, but run the original program;

• Call the subprogram (CALL)

If X0 is ON, jump to the subprogram

If the coil is not ON, run the original program;

After executing the subprogram, return to the main program;

The subprogram will start from Pn and finish with SRET. CALL Pn is used to call the subprogram. n is a integer in the range of 0 to 9999.

Tag I is usually used in interruption, including external interruption, time interruption etc. It often works together with IRET (interruption return), EI (enable interruption), DI (disable interruption);

• External interruption

- Accept the input signal from the special input terminals, not affected by the scan cycle. Activate the input signal, execute the interruption subroutine.
- ➤ With external interruption, PLC can dispose the signal shorter than scan cycle; So it can be used as essential priority disposal in sequence control, or used in short time pulse control.

• Time interruption

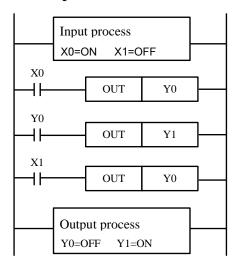
Execute the interruption subroutine at each specified interruption loop time. Use this interruption in the control which is different from PLC's operation cycle;

• Action sequence of input/output relays and response delay

➤ Input

Before PLC executing the program, read all the input terminal's ON/OFF status to the image area. In the process of executing the program, even the input changed, the content in the input image area will not change. However, in the next scan cycle, the changes will be read.

Output


Once all the instructions end, transfers the ON/OFF status of output Y image area to the output lock memory area. This will be the actual output of the PLC. The output contactors will act according to the device's response delay time.

When use batch input/output mode, the drive time and operation cycle of input filter and output device will also show response delay.

• Not accept narrow input pulse signal

PLC's input ON/OFF time should be longer than its loop time. If consider input filter's response delay 10ms, loop time is 10ms, then ON/OFF time needs 20 ms separately. So, up to 1, 000/(20+20)=25Hz input pulse can't be processed. But, this condition could be improved when use PLC's special function and applied instructions (such as high speed count, input interruption, input filter adjustment).

• Dual output (Dual coils) action

As shown in the left map, please consider the case of using the same coil Y0 at many positions:

E.g. X0=ON, X1=OFF

The first Y0: X0 is ON, its image area is ON, output Y1 is also ON.

The second Y0: as input X1 is OFF, the image area is OFF.

So, the actual output is: Y0=OFF,

Y1 = ON.

When executing dual output (use dual coil), the after one is act in priority.

3 Basic Program Instructions

This chapter introduces the basic instructions and their functions.

3-1. Basic Instructions List

XD3 series support all the basic instructions:

Mnemonic	Function	Format and Device	Chapt er
LD	Initial logical operation contact type NO (normally open)	M0	3-2
LDD	Read the status from the contact directly		3-6
LDI	Initial logical operation contact type NC (normally closed)	M0	3-2
LDDI	Read the normally closed contact directly	X0	3-6
LDP	Initial logical operation- Rising edge pulse	M0	3-5
LDF	Initial logical operation- Falling /trailing edge pulse	M0	3-5
AND	Serial connection of NO (normally open) contacts	M0	3-3
ANDD	Read the status from the contact directly		3-6
ANI	Serial connection of NC (normally closed) contacts	M0	3-3

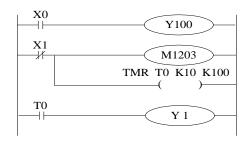
ANDDI	Read the normally closed contact directly	XO		3-6
ANDP	Serial connection of rising edge pulse	M0		3-5
ANDF	Serial connection of falling/trailing edge pulse	M0		3-5
OR	Parallel connection of NO (normally open) contacts	M0		3-4
ORD	Read the status from the contact directly	X0 HD		3-6
ORI	Parallel connection of NC (normally closed) contacts	MO		3-4
ORDI	Read the normally closed contact directly	X0		3-6
ORP	Parallel connection of rising edge pulse	MO III		3-5
ORF	Parallel connection of falling/trailing edge pulse	MO III		3-5
ANB	Serial connection of multiply parallel circuits			3-8
ORB	Parallel connection of multiply parallel circuits	-1111-		3-7
OUT	Final logic operation type coil drive		Y0	3-2
OUTD	Output to the contact directly		(P)	3-6
SET	Set a bit device permanently ON		SET Y0	3-12
RST	Reset a bit device		RST Y0	3-12

	permanently OFF		
PLS	Rising edge pulse	PLS Y0	3-11
PLF	Falling/trailing edge pulse	PLF Y0	3-11
MCS	Connect the public serial contacts	Y0 Y0	3-9
MCR	Clear the public serial contacts	¥0	3-9
ALT	The status of the assigned device is inverted on every operation of the instruction	ALT M0	3-10
END	Force the current program scan to end	END	3-14
GROUP	Group	GROUP	3-15
GROUPE	Group End	GROUPE	3-15
TMR	Time	TMR K10K100	2-7

3-2. [LD], [LDI], [OUT]

Mnemonic and Function

Mnemonic	Function	Format and Operands
LD (positive)	Initial logic operation contact type NO (Normally Open)	Operands: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
LDI (negative)	Initial logic operation contact type NC (Normally Closed)	Devices: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
OUT (OUT)	Final logic operation type drive coil	Operands: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m


Statement

- Connect the LD and LDI instructions directly to the left bus bar. It can work with ANB and be used at the branch start.
- OUT instruction can drive the output relays, auxiliary relays, status, timers, and counters. But this instruction can't be used for the input relays
- For coil T and C, please set constant K or register D when using OUT.
- The following table shows the constant K setting range, actual timer constant, program step relative to OUT instruction (include the setting value).

Timer, Counter	Setting Range of constant K	The actual setting value
1ms Timer		0.001~32.767 second
10ms Timer	1~32,767	0.01~327.67 second
100ms Timer		0.1~3276.7 second
16 bits counter	1~32,767	1~32,767

32 bits counter	1~2,147,483,647	1~2,147,483,647

LD X0

OUT Y100

LDI X1

OUT M1203

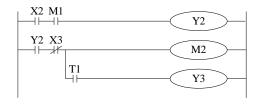
TMR T0 K10 K100

LD T0

OUT Y1

3-3. [AND], [ANI]

Mnemonic and Function


Mnemonic	Function	Format and Operands
AND	Normal open	M0
(and)	contactor in series	
		Operand: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
ANI	Normal close	M0
(and reverse)	contactor in series	
		Operand: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m

Statements

- Use AND and ANI to connect the contactors in series. There is no limit for contactors in series. They can be used for many times.
- Use OUT instruction through other coil is called "follow-on" output (For an example see the program below: OUT M2 and OUT Y3). Follow-on output can repeat as long as the output order is correct. There's no limit for the serial connected contactors and follow-on

output times.

LD X2

AND M1

OUT Y2

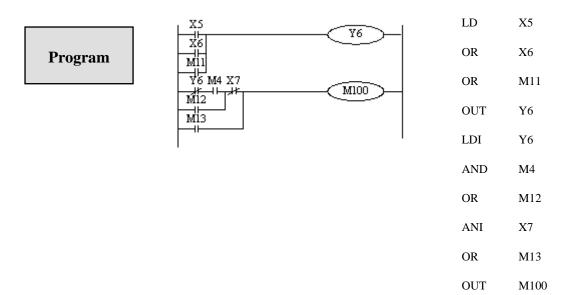
LD Y2

ANI X3

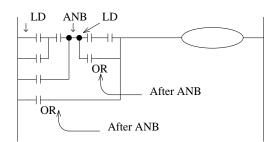
OUT M2

AND T1

OUT Y3


3-4. [OR], [ORI]

Mnemonic and Function

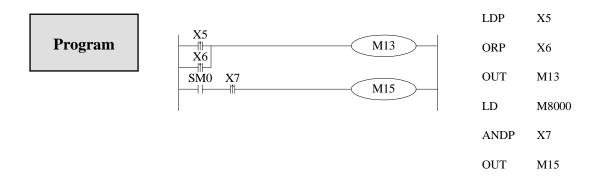

Mnemonic	Function	Format and Operands
OR (OR)	Parallel connection of NO (Normally Open) contactors	MO H
		Operand: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
ORI (OR reverse)	Parallel connection of NC (Normally Closed) contactors	Operand: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m

Statements

- Use the OR and ORI instructions for parallel connection of contactors. To connect a block that contains more than one contactor connected in series to another circuit block in parallel, use ORB instruction, which will be described later;
- OR and ORI start from the instruction step, parallel connect with the LD and LDI instruction step introduced before. There is no limit for the parallel connect times.

Relationship with ANB

The parallel connection with OR, ORI instructions should connect with LD, LDI instructions in principle. But behind the ANB instruction, it's still ok to add a LD or LDI instruction.


3-5. [LDP], [LDF], [ANDP], [ANDF], [ORP], [ORF]

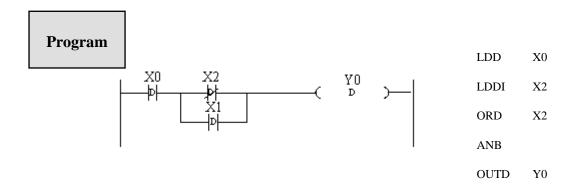
Mnemonic and Function

Mnemonic	Function	Format and Operands
LDP (LoaD Pulse)	Initial logical operation- Rising edge pulse	X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
LDF (LoaD Falling pulse)	Initial logical operation Falling/trailing edge pulse	X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
ANDP (AND Pulse)	Serial connection of Rising edge pulse	X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
ANDF (AND Falling pulse)	Serial connection of Falling/trailing edge pulse	X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
ORP (OR Pulse)	Parallel connection of Rising edge pulse	X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
ORF (OR Falling pulse)	Parallel connection of Falling/trailing edge pulse	X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m

Statements

- ➤ LDP, ANDP, ORP will be ON for one scanning period when the signal rising pulse is coming (OFF→ON)
- ➤ LDF, ANDF, ORF will be ON for one scanning period when the signal falling pulse is coming (ON→OFF)

3-6. [LDD], [LDDI], [ANDD], [ANDDI], [ORD], [ORDI], [OUTD]


Mnemonic and Function

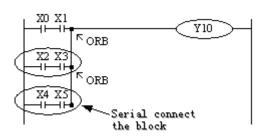
Mnemonic	Function	Format and Operands
LDD	Read the status from the contact directly	Devices: X
LDDI	Read the normally closed contact directly	Devices: X
ANDD	Read the status from the contact directly	Devices: X

ANDDI	Read the normally closed contact directly	Devices: X
ORD	Read the status from the contact directly	Devices: X
ORDI	Read the normally closed contact directly	Devices: X
OUTD	Output to the contact directly	Devices: Y

Statement

- The function of LDD, ANDD, ORD instructions are similar to LD, AND, OR; LDDI, ANDDI, ORDI instructions are similar to LDI, ANDI, ORI; but if the operand is X, the LDD, ANDD, ORD commands read the signal from the terminals directly.
- ➤ OUTD and OUT are output instructions. OUTD will output immediately when the condition is satisfied, needn't wait for the next scan cycle.

3-7. [ORB]


Mnemonic and

Mnemonic	Function	Format and Devices
ORB (OR Block)	Parallel connect the serial circuits	Devices: none

Statements

- Two or more contactors is called "serial block". If parallel connect the serial block, use LD, LDI at the branch start point, use ORB at the branch end point;
- As the ANB instruction, an ORB instruction is an independent instruction which is not associated with any soft component.
- > There are no limits for parallel circuits' quantity when using ORB for every circuit.

Program

Recommended good programming method:

	0 1 0	•
LD	X0	
AND	X1	
LD	X2	
AND	X3	
ORB		
LD	X4	
AND	X5	
ORB		

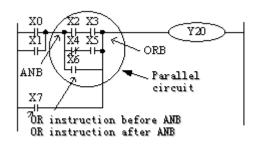
Y10

OUT

Non-preferred programming method:

LD	X0
AND	X1
LD	X2
AND	X3
LD	X4
AND	X5
ORB	
ORB	
OUT	Y10

3-8. [ANB]


Mnemonic and Function

Mnemonic	Function	Format and Devices
ANB (And Block)	Serial connection of parallel	
Block)	circuits	Devices: none

Statements

- ➤ Use ANB to serial connects two parallel circuits. Use LD, LDI at the brach start point; use ANB at the branch end point.
- > There are no limits for ANB instruction using times.

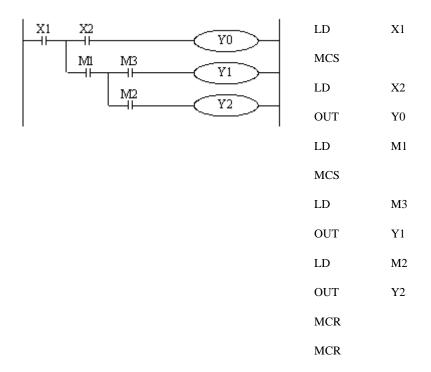
Program

OR	X1
LD	X2
AND	X3
LDI	X4
AND	X5
ORB	
OR	X6
ANB	
OR	X7
OUT	Y20

LD

X0

3-9. [MCS], [MCR]

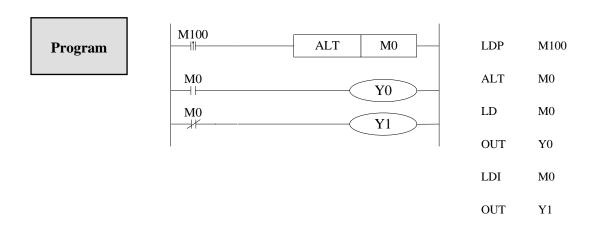

Mnemonic and Function

Mnemonic	Function	Format and Devices
MCS (Master control)	The start of new bus line	Devices: None
MCR (Master control Reset)	Reset the bus line	M0 St) St) S2 S3 D1 D2

Statements

- After the execution of an MCS instruction, the bus line (LD, LDI) moves to a point after the MCS instruction. An MCR instruction resets this to the original bus line.
- MCS, MCR instructions should use in pair.
- The bus line can be nesting. Use MCS, MCR instructions between MCS, MCR instructions. The nesting level increase with the using of MCS instruction. The max nesting level is ten. When executing MCR instruction, go back to the last level of bus line.
- ➤ When use flow program, bus line management could only be used in the same flow. When the flow ends, it must go back to the main bus line.

Program


3-10. [ALT]

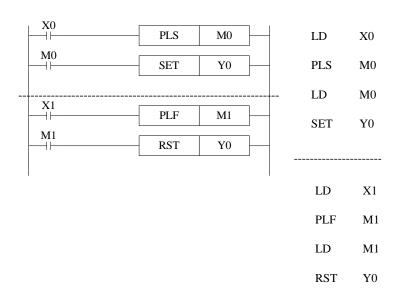
Mnemonic and Function

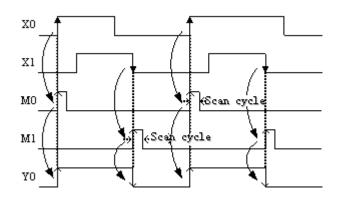
Mnemonic	Function	Format and Devices
ALT (Alternate)	Alternate the coil	ALT MO
		Coil: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m

Statements

The status of the coil is reversed after using ALT (ON to OFF, OFF to ON).

3-11. [PLS], [PLF]


Mnemonic and Function

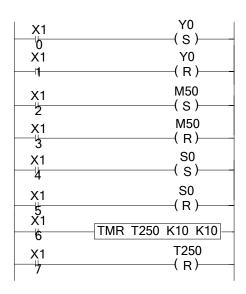

Mnemonic	Function	Format and Devices
PLS (Rising Pulse)	Rising edge pulse	Operand: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
PLF (Falling Pulse)	Falling edge pulse	Operand: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m

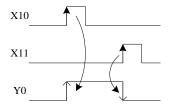
Statements

- For using PLS instruction: soft component Y and M will act during the scanning period after the drive is ON.
- For using PLF instruction: soft component Y and M will act during the scanning period after the drive is OFF.

Program

3-12. [SET], [RST]


Mnemonic and Function


Mnemonic	Function	Format and Devices
SET (Set)	Set a bit device permanently ON	Operand: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
RST (Reset)	Reset a bit device permanently OFF	Operand: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m

Statements

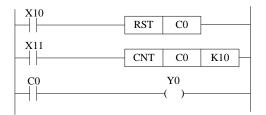
- In the following program, Y0 will keep ON even X10 turns OFF after turning ON. Y0 will not ON even X11 turns OFF after turning ON. This is the same to S and M.
- SET and RST can be used for many times for the same soft component. Any order is allowed, but the last one is effective.
- RST can be used to reset the counter, timer and contactor.
- When using SET or RST, it cannot use the same soft component with OUT.

Program

X10		
Y0		
X11		
Y0		
X12		
M50		
X13		
M50		
X14		
S0		
X15		
S0		
X16		
T250	K10	K10
X17		
	Y0 X11 Y0 X12 M50 X13 M50 X14 S0 X15 S0 X16 T250	Y0 X11 Y0 X12 M50 X13 M50 X14 S0 X15 S0 X16 T250 K10

RST

T250


3-13. 【CNT】【CNT_D】【DCNT】【DCNT_D】【RST】 for the

counters

Mnemonic and Function

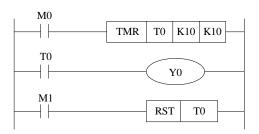
Mnemonic	Function	Format and devices
CNT Output	16 bits non power-off retentive increase count, the drive of count coil	Operand: K, D
CNT_D	16 bits power-off retentive decrease count, the drive of	CNT_D HC0 K8
Output	count coil	Operand: K, D
DCNT Output	32 bits non power-off retentive increase count, the drive of count	DCNT C0 K8
1	coil	Operand: K, D
DCNT_D	32 bits power-off retentive decrease count, the drive of	DCNT_D HC0 K8
Output	count coil	Operand: K, D
RST	Reset the output coil, clear the current count value	RST HSCO
Reset		Operand: C, HC, HSC

Internal counter programming

C0 increase counts the X11 OFF to ON times. When C0 reaches K10, C0 will become OFF to ON. When X11 becomes OFF to ON, the C0 current value will keep increasing, and the C0 coil will still be ON. When X10 is ON, reset the C0 coil.

Power-off retentive counter will keep the current value and counter coil status when the power is off.

High speed counter programming


- Increase count the OFF to ON times of M0.
- When the count value reaches set value (value of K or D), the count coil will be ON.
- When M1 is ON, the count coil of HSC0 reset, the current value becomes 0.

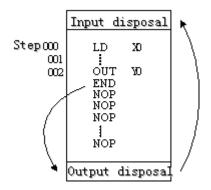
3-14. [TMR], [TMR-A] for timers

Mnemonic and Function

Mnemonic	Function	Format and devices
TMR output	Non power-off retentive 100ms timer, the drive of coil	operand: K, D
TMR output	Non power-off retentive 10ms timer, the drive of coil	operand: K, D
TMR output	Non power-off retentive 1ms timer, the drive of coil	operand: K, D
TMR_A output	Power-off retentive 100ms timer, the drive of coil	operand: K, D
TMR_A output	Power-off retentive 10ms timer, the drive of coil	operand: K, D
TMR_A output	Power-off retentive 1ms timer, the drive of coil	operand: C, HC, HSC

Internal timer

When M0 is ON, T0 starts to timing. When T0 reaches K10, T0 coil is ON. Then T0 continues timing. When M1 is ON, reset the T0.


Power-off retentive timer will keep the current value and counter coil status when the power is off.

3-15. [END]

Mnemonic and Function

Mnemonic	Function	Format and Devices: None
END (END)	Force the current program scan to end	Devices: None

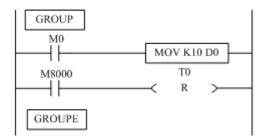
Statements

PLC repeatedly carries on input disposal, program executing and output disposal. If write END instruction at the end of the program, then the instructions behind END instruction won't be executed. If there's no END instruction in the program, the PLC executes the end step and then repeats executing the program from step 0.

When debug, insert END in each program segment to check out each program's action.

Then, after confirm the correction of preceding block's action, delete END instruction. Besides, the first execution of RUN begins with END instruction.

When executing END instruction, refresh monitor timer. (Check if scan cycle is a long timer.)


3-16. [GROUP], [GROUPE]

Mnemonic and Function

Mnemonic	Function	Format and Device
GROUP	GROUP	GROUP
		Devices: None
GROUPE	GROUP END	GROUPE
		Devices: None

Statements

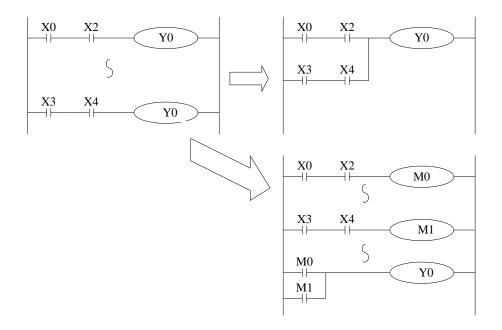
- GROUP and GROUPE should used in pairs.
- ➤ GROUP and GROUPE don't have practical meaning; they are used to optimize the program structure. So, add or delete these instructions doesn't affect the program's running;
- ➤ The using method of GROUP and GROUPE is similar with flow instructions; enter GROUP instruction at the beginning of group part; enter GROUPE instruction at the end of group part.

Generally, GROUP and GROUPE instruction can be programmed according to the group's function. Meantime, the programmed instructions can be FOLDED or UNFOLDED. To a redundant project, these two instructions are quite useful.

3-17. Programming notes

1. Contactor structure and steps

Even in the sequencial control circuit with the same function, it's also available to simplify the program and shorten the program steps according to the contactors' structure. General programming principle is: (a) write the circuit with many serial contacts on the top; (b) write the circuit with many parallel contactors in the left.


2. Program's executing sequence

Handle the sequencial control program by **[**From top to bottom **]** and **[**From left to right **]**

Sequencial control instructions also encode following this procedure.

3. Dual output dual coil's activation and the solution

- If carry on coil's dual output (dual coil) in the sequencial control program, then the last action is prior.
- Dual output (dual coil) doesn't go against the input rule. But as the preceding action is very complicate, please modify the program as in the following example.

• There are other methods. E.g. jump instructions or flow instructions.

4 Applied Instructions

In this chapter, we describe applied instruction's function of XD3 series PLC.

4-1. Applied Instructions List

Mnemonic	Function	Ladder chart	Chapter	
Program Flov	Program Flow			
CJ	Condition jump	CJ Pn	4-3-1	
CALL	Call subroutine	CALL Pn	4-3-2	
SRET	Subroutine return	SRET	4-3-2	
STL	Flow start	STL Sn	4-3-3	
STLE	Flow end	STLE	4-3-3	
SET	Open the assigned flow, close the current flow	SET Sn	4-3-3	
ST	Open the assigned flow, not close the current flow	ST Sn	4-3-3	
FOR	Start a FOR-NEXT loop	FOR S	4-3-4	
NEXT	End of a FOR-NEXT loop	NEXT NEXT	4-3-4	
FEND	Main program END	FEND	4-3-5	
END	Program END	END	4-3-5	
Data Compare				

LD=	LD activates if $(S1) = (S2)$	LD= S1 S2	4-4-1
LD>	LD activates if (S1) > (S2)	LD> S1 S2	4-4-1
LD<	LD activates if $(S1) = < (S2)$	LD< S1 S2	4-4-1
LD<>	LD activates if (S1) ≠(S2)	LD<> S1 S2	4-4-1
LD<=	LD activates if $(S1) \le (S2)$	LD<= S1 S2	4-4-1
LD>=	LD activates if $(S1) \ge (S2)$	LD>= S1 S2	4-4-1
AND=	AND activates if (S1)= (S2)	AND= S1 S2	4-4-2
AND>	AND activates if (S1)> (S2)	AND> S1 S2	4-4-2
AND<	AND activates if (S1) < (S2)	AND< S1 S2	4-4-2
AND<>	AND activates if (S1) ≠ (S2)	AND S1 S2	4-4-2
AND<=	AND activates if (S1) ≤ (S2)		4-4-2
AND>=	AND activates if $(S1) \ge$ $(S2)$	AND= S1 S2	4-4-2
OR=	OR activates if $(S1) = (S2)$	OR= S1 S2	4-4-3
OR>	OR activates if $(S1) > (S2)$	OR> S1 S2	4-4-3
OR<	OR activates if $(S1) < (S2)$	OR< S1 S2	4-4-3
OR<>	OR activates if $(S1) \neq (S2)$	OR<> S1 S2	4-4-3
OR<=	OR activates if $(S1) \le (S2)$	OR<= S1 S2	4-4-3
OR>=	OR activates if $(S1) \ge (S2)$	OR>= S1 S2	4-4-3

Data Move			
СМР	Compare the data	CMP S1 S D	4-5-1
ZCP	Compare the data in certain area	ZCP S1 S2 S D	4-5-2
MOV	Move	MOV S D	4-5-3
BMOV	Block move	BMOV S D n	4-5-4
PMOV	Transfer the Data block	PMOV S D n	4-5-5
FMOV	Multi-points repeat move	FMOV S D n	4-5-6
EMOV	Float number move	EMOV S D	4-5-7
FWRT	Flash ROM written	FWRT S D	4-5-8
MSET	Zone set	MSET S1 S2	4-5-9
ZRST	Zone reset	ZRST S1 S2	4-5-10
SWAP	Swap the high and low byte	SWAP S	4-5-11
XCH	Exchange two values	XCH D1 D2	4-5-12
Data Opera	tion		
ADD	Addition	ADD S1 S2 D	4-6-1
SUB	Subtraction	SUB S1 S2 D	4-6-2
MUL	Multiplication	MUL S1 S2 D	4-6-3
DIV	Division	DIV S1 S2 D	4-6-4
INC	Increment	INC D	4-6-5
DEC	Decrement	DEC D	4-6-5
MEAN	Mean	MEAN S D n	4-6-6
WAND	Word And	WAND S1 S2 D	4-6-7

WOR	Word OR	WOR S1 S2 D	4-6-7
WXOR	Word eXD3lusive OR	WXOR S1 S2 D	4-6-7
CML	Compliment	CML S D	4-6-8
NEG	Negative	NEG D	4-6-9
Data Shift			
SHL	Arithmetic Shift Left	SHL D n	4-7-1
SHR	Arithmetic Shift Right	SHR D n	4-7-1
LSL	Logic shift left	LSL D n	4-7-2
LSR	Logic shift right	LSR D n	4-7-2
ROL	Rotation shift left	ROL D n	4-7-3
ROR	Rotation shift right	ROR D n	4-7-3
SFTL	Bit shift left	SFTL S D n1 n2	4-7-4
SFTR	Bit shift right	SFTR S D n1 n2	4-7-5
WSFL	Word shift left	WSFL S D n1 n2	4-7-6
WSFR	Word shift right	WSFR S D n1 n2	4-7-7
Data Conv	ert		
WTD	Single word integer converts to double word integer	WTD S D	4-8-1
FLT	16 bits integer converts to float point	FLT S D	4-8-2
DFLT	32 bits integer converts to float point	DFLT S D	4-8-2
FLTD	64 bits integer converts to float point	FLTD S D	4-8-2
INT	Float point converts to integer	INT S D	4-8-3
BIN	BCD converts to binary	BIN S D	4-8-4

BCD	Binary converts to BCD	BCD S D	4-8-5
ASCI	Hex. converts to ASCII	ASCI S D n	4-8-6
HEX	ASCII converts to Hex.	HEX S D n	4-8-7
DECO	Coding	DECO S D n	4-8-8
ENCO	High bit coding	ENCO S D n	4-8-9
ENCOL	Low bit coding	ENCOL S D n	4-8-10
GRY	Binary to Gray code	GRY S D	4-8-11
GBIN	Gray code to binary	GBIN S D	4-8-12
Float Point (Operation		
ECMP	Float compare	ECMP S1 S2 D	4-9-1
EZCP	Float Zone compare	EZCP S1 S2 D1 D2	4-9-2
EADD	Float Add	EADD S1 S2 D	4-9-3
ESUB	Float Subtract	ESUB S1 S2 D	4-9-4
EMUL	Float Multiplication	EMUL S1 S2 D	4-9-5
EDIV	Float division	EDIV S1 S2 D	4-9-6
ESQR	Float Square Root	ESQR S D	4-9-7
SIN	Sine		4-9-8
COS	Cosine	COS S D	4-9-9
TAN	Tangent	TAN S D	4-9-10
ASIN	Float Sine	ASIN S D	4-9-11
ACOS	Float Cosine	ACOS S D	4-9-12
ATAN	Float Tangent	ATAN S D	4-9-13
Clock Opera	ntion		•
TRD	Read RTC data	TRD D	4-10-1
TWR	Write RTC data	TWR D	4-10-2
	<u> </u>		1

4-2. Reading Method of Applied Instructions

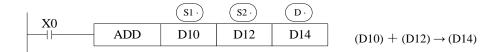
In this manual, the applied instructions are described in the following manner.

1. Summary

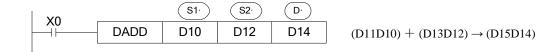
	,		
ADDITION [A	DD]		
16 bits	ADD	32 bits	DADD
Execution condition	Normally ON/OFF, Rising/Falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S1	Specify the data or register address	16 bits/32 bits, BIN
S2	Specify the data or register address	16 bits/32 bits, BIN
D	Specify the register to store the sum result	16 bits/32 bits, BIN


3. Suitable Soft Components

Word	Operand		System Constan						Constant	Module		
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•	•	•	•	•	•	•	•		
	S2	•	•	•	•	•	•	•	•	•		
	D	•	•	•	•		•	•	•			
	Operand				Syste	em						
Bit		X	Y	M*	S*	T*	C*	Dn.m	ļ.			
		1	I	1			1					


*Note: D includes D, HD. TD includes TD, HTD. CD includes CD, HCD, HSCD, HSD. DM includes DM, DHM. DS includes DS, DHS. M includes M, HM, SM. S includes S and HS. T includes T and HT. C includes C and HC.

Description

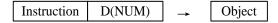
<16 bits instruction>

<32 bits instruction>

- > Two source data make binary addition and the result data store in object address.
 - The highest bit of each data is positive (0) and negative (1) sign bit. These data will make addition operation through algebra. Such as 5 + (-8) = -3.
- ➤ If the result of a calculations is "0", the "0' flag acts. If the result exceeds 323,767(16 bits operation) or 2,147,483,648 (32 bits operation), the carry flag acts. (refer to the next page). If the result exceeds -323,768 (16 bits operation) or -2,147,483,648 (32 bits operation), the borrow flag acts (Refer to the next page).
- ➤ When carry on 32 bits operation, low 16 bits of 32-bit register are assigned, the register address close to the low 16 bits register will be assigned to high 16 bits of 32-bit register. Even number is recommended for the low 16 bits register address.
- > The source and object can be same register address.
- ➤ In the above example, when X0 is ON, the addition operation will be excuted in each scanning period.

Related flag

Flag	Name	Function
M8020	Zero	ON: the calculate result is zero OFF: the calculate result is not zero
M8021	Borrow	ON: the calculate result is over 32767(16bits) or 2147483647(32bits) OFF: the calculate result is not over 32767(16bits) or 2147483647(32bits)


M8022	Carry	ON: the calculate result is over 32767(16bits) or 2147483647(32bits) OFF: the calculate result is not over 32767(16bits) or
		2147483647(32bits)

Notes

• The assignment of the data

The data register of XD3 series PLC is a single word (16 bit) data register, single word data only occupy one register which is used to single word instruction. The process range is decimal –327,68~327,67, or hex 0000~FFFF.

Single word object instruction D(NUM)

Double words (32 bit) occupy two data registers; the two registers' address is continuous. The process range is: decimal -214,748,364,8~214,748,364,7 or hex 00000000~FFFFFFFF.

Double word object instruction D(NUM+1) D(NUM)

• The way to represent 32 bits instruction

Add letter "D" before 16 bits instruction to represent 32 bits instruction.

For example:

ADD D0 D2 D4 16 bits instruction

DADD D10 D12 D14 32 bits instruction

※1: It shows the flag bit following the instruction action.

※2: (S⋅)Source operand which won't change with instruction working

 $3: \overline{D}$. Destinate operand which will change with instruction working

*4: It introduces the instruction's basic action, using way, applied example, extend function, note items and so on.

4-3. Program Flow Instructions

Mnemonic	Instruction's name	Chapter
CJ	Condition Jump	4-3-1
CALL	Call subroutine	4-3-2
SRET	Subroutine return	4-3-2
STL	Flow start	4-3-3
STLE	Flow end	4-3-3
SET	Open the assigned flow, close the current flow (flow jump)	4-3-3
ST	Open the assigned flow, not close the current flow (Open the new flow)	4-3-3
FOR	Start of a FOR-NEXT loop	4-3-4
NEXT	End of a FOR-NEXT loop	4-3-4
FEND	First End	4-3-5
END	Program End	4-3-5

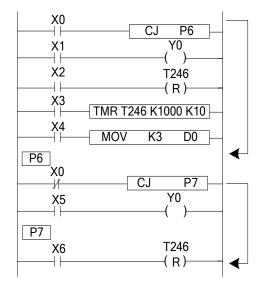
4-3-1. Condition Jump [CJ]

1. Summary

As the instruction to execute part of the program, CJ shortens the operation cycle and avoids using the dual coil

Condition Jump	[CJ]		
16 bits	CJ	32 bits	-
Execution condition	Normally ON/OFF coil	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands


Operands	Function	Data Type
Pn	Jump to the target (with pointer Nr.) P (P0~P9999)	Pointer's Nr.

3. Suitable Soft Components

Other	Pointer		
	PI		
	•		

Description

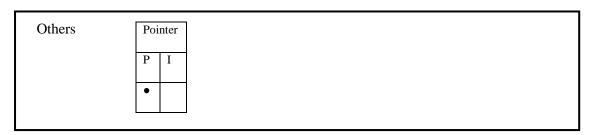
In the below graph, if X0 is ON, jump from the first step to the next step behind P6 tag. If X0 is OFF, do not execute the jump instruction;

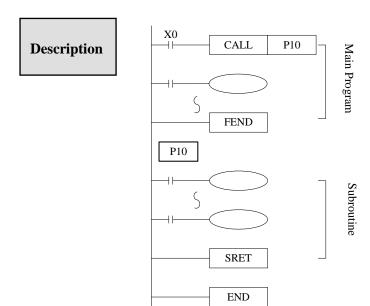
- ➤ In the left graph, Y0 becomes to be dual coil output, but when X0=OFF, X1 activates; when X0=ON, X5 activates
- CJ can't jump from one STL to another STL;
- ➤ After driving timer T0~T575, HT0~HT795 and HSC0~HSC30, if executes CJ, continue working, the output activates.
- ➤ The Tag must be match when using CJ instruction.

4-3-2. Call subroutine [CALL] and Subroutine return [SRET]

1. Summary

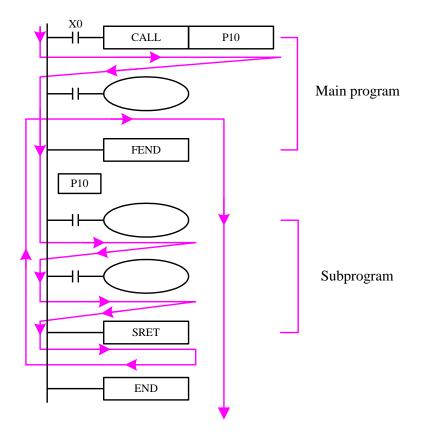
Call the programs which need to be executed together, decrease the program's steps;


Subroutine Call	[CALL]		
16 bits	CALL	32 bits	-
Execution condition	Normally ON/OFF, Rising/Falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-
Subroutine Retur	rn [SRET]		
16 bits	SRET	32 bits	-
Execution condition	-	Suitable Models	XD3
Hardware requirement	-	Software requirement	-


2. Operands

Operands	Function	Data Type

Pn	Jump to the target (with pointer No.) P	Pointer's No.
	(P0~P9999)	


3. Suitable Soft Components

- If X0= ON, execute the call instruction and jump to P10. After executing the subroutine, return the original step via SRET instruction.
- Program the tag with FEND instruction (will describe this instruction later)
- In the subroutine 9 times call is allowed, so totally there can be 10 nestings.
- When calling the subprogram, all the timer, OUT, PLS, PLF of the main program will keep the status.
- All the OUT, PLS, PLF, timer of subprogram will keep the status when subprogram returning.

Subprogram executing diagram:

If X0=ON, the program executes as the arrow.

If X0=OFF, the CALL instruction will not work; only the main program works.

The notes to write the subprogram:

Please programming the tag after FEND. Pn is the start of subprogram; SRET is the end of subprogram. CALL Pn is used to call the subprogram. The range of n is 0 to 9999.

The subprogram calling can simplify the programming. If the program will be used in many places, make the program in subprogram and call it.

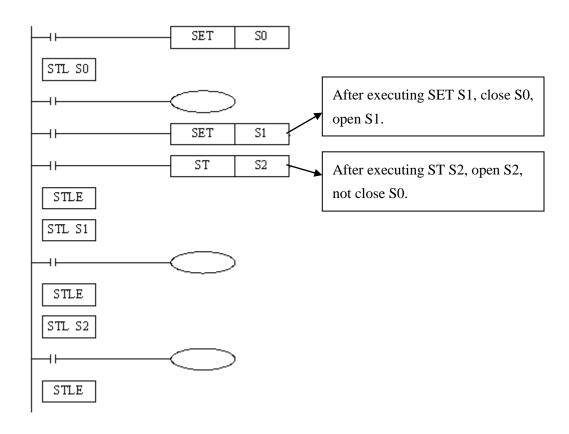
4-3-3. Flow [SET], [ST], [STL], [STLE]

1. Summary

Instructions to specify the start, end, open, close of a flow;

Open the specif	ied flow, close the local flow	[SET]	
16 bits	SET	32 bits	-
Execution condition	Normally ON/OFF, Rising/Falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

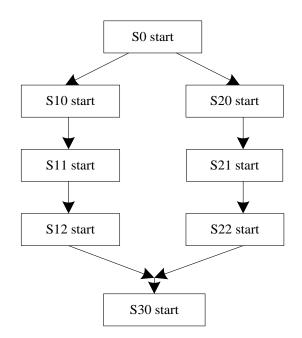
Open the specif	ried flow, not close the loca	al flow [ST]	
16 bits	ST	32 bits	-
Execution	Normally ON/OFF,	Suitable	XD3
condition	Rising/Falling edge	Models	
Hardware	-	Software	-
requirement		requirement	
Flow starts [ST	L]	I	
16 bits	STL	32 bits	-
Execution	-	Suitable	XD3
condition		Models	
Hardware	-	Software	-
requirement		requirement	
Flow ends [STI	LE]		
16 bits	STLE	32 bits	-
Execution	-	Suitable	XD3
condition		Models	
Hardware	-	Software	-
requirement		requirement	

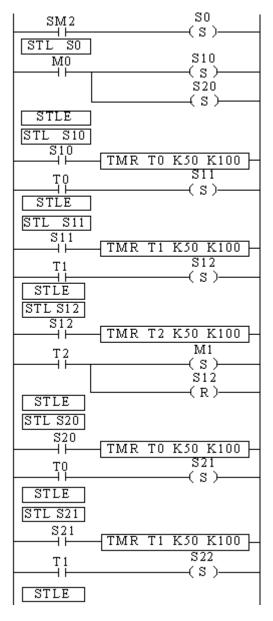

2. operands

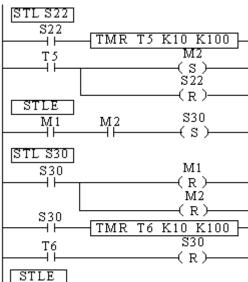
Operands	Function	Data Type
Sn	Jump to the target flow S	Flow No.

*Note: M includes M, HM and SM; S includes S, HS; T includes T and HT; C includes C and HC.

Description


- STL and STLE should be used in pairs. STL represents the start of a flow; STLE represents the end of a flow.
- Every flow is independent. They cannot be nesting. There is no need to write the flow as the order S0, S1, S2... you can make the order. For example, executing S10, then S5, S0.
- After executing of **SET Sxxx** instruction, the flow specified by these instructions is ON.
- After executing **RST Sxxx** instruction, the specified flow is OFF.
- In flow S0, SET S1 close the current flow S0, open flow S1.
- In flow S0, ST S2 open the flow S2, but don't close flow S0.
- When flow turns from ON to be OFF, reset OUT, PLS, PLF, not accumulate timer etc. in the flow.
- ST instruction is usually used when a program needs to run many flows at the same time.
- After executing **SET Sxxx** instruction and jump to the next flow, the pulse instructions in the former flow will be closed. (including one-segment, multi-segment, relative or absolute, return to the origin)

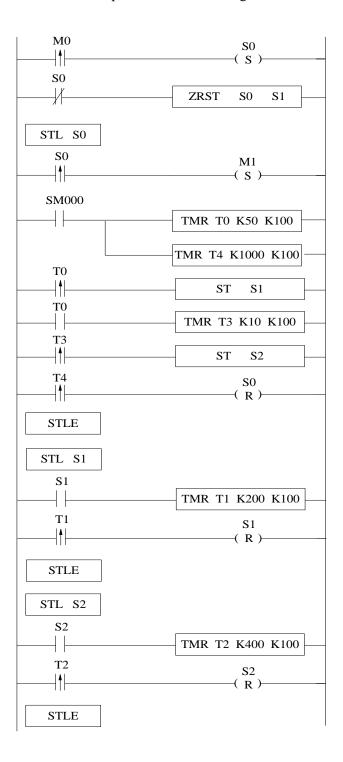



Example

Example 1: the flows run in branch then merge in one flow.

Program diagram:

The program explanation:


When SM2 is ON, set ON flow S0. When M0 is ON, set ON flow S10 and S20.

In S10 branch, it runs S10, S11 and S12. Set on M1 means the S10 branch is finished.

In S20 branch, it runs S20, S21 and S22. Set on M2 means the S20 branch is finished.

When both branch S10 and S20 end, set on S30. When S30 end, reset S30.

Example 2: flow nesting. When S0 is running for a while, S1 and S2 start to run; the running status of S1 is kept. When S0 is running for certain time, closes S0 and force close S1 and S2.

4-3-4. [FOR] and [NEXT]

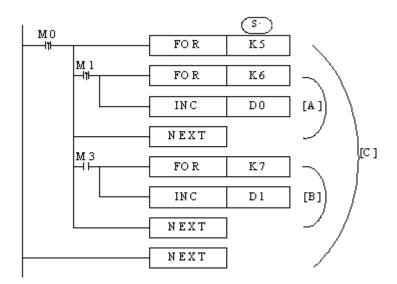
1. Summary

Loop execute the program between FOR and NEXT with the specified times;

Loop starts [FOR]			
16 bits	FOR	32 bits	-
Execution condition	Rising/Falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-
Loop ends [NEXT	[]		
16 bits	NEXT	32 bits	-
Execution condition	Normally ON/OFF, Rising/Falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S	Program's loop times between FOR and NEXT	16 bits, BIN


3. Suitable Soft Components

D* FD TD* CD* DX DY DM* DS* K/H ID QD S • ID I	Word	Operand				Sy	stem				Constant	Мо	dule
S • I			D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
		S	•								•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

- FOR.NEXT instructions must be programmed as a pair. Nesting is allowed, and the nesting level is 8.
- The program after NEXT will not be executed unless the program between FOR and NEXT is executed for specified times.
- Between FOR and NEXT, LDP, LDF instructions are effective for one time. Every time
 when M0 turns from OFF to ON, and M1 turns from OFF to ON, [A] loop is executed 6
 times.
- Every time if M0 turns from OFF to ON and M3 is ON, [B] loop is executed $5 \times 7 = 35$ times
- If there are many loop times, the scan cycle will be prolonged. Monitor timer error may occur, please note this.
- If NEXT is before FOR, or no NEXT, or NEXT is behind FEND, END, or FOR and NEXT number is not equal, an error will occur.
- Between FOR~NEXT, CJ nesting is not allowed. FOR~NEXT must be in pairs in one STL.

Example 1: when M0 is ON, the FOR NEXT starts to sort the numbers in the range of D1 to D20 from small to large. D21 is offset value. If there are many sortings in the program, please use C language to save the programming time and scanning time.

```
SM2
                                               MOV
                                                      K19
                                                            D0
M0
                                                 FOR
                                                       D0
                                              MOV
                                                      K0
                                                          D21
           SM<sub>0</sub>
                                                FOR
                                                      D0
                   D1[D21]
                              D2[D21]
                                           XCH D1[D21] D2[D21]
                                                INC
                                                      D21
                                               NEXT
                                               NEXT
```

```
LD
       SM2
                        //SM2 is initial ON coil
MOV
       K19
               D0
                         //the times of FOR loop
LD
                      //M0 to trigger the FOR loop
       M0
MCS
                  //
FOR
       D0
                    //Nesting FOR loop, the loop times is D0
MOV
       K0
               D21
                          //the offset starts from 0
LD
       SM<sub>0</sub>
                        //SM0 is always ON coil
MCS
                  //
FOR
               D0
                            //nesting FOR loop, the loop times is D0
LD>
       D1[D21]
                       D2[D21]
                                    //if the current data is larger than the next, it will be ON
XCH
       D1[D21]
                       D2[D21] //exchange the two neighbouring data
LD
       SM<sub>0</sub>
                       //M8000 is always ON coil
INC
        D21
                       //increase one for D21
                  //
MCR
NEXT
                   //match the second FOR
MCR
NEXT
                   //match the first FOR
```

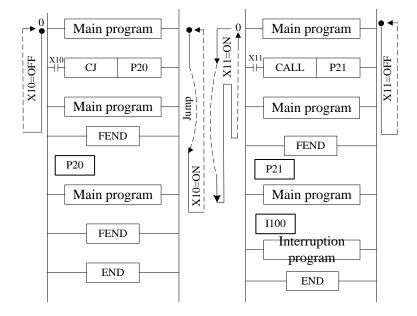
4-3-5. [FEND] and [END]

1. Summary

FEND means the main program ends, while END means program ends;

main program ends []	FEND]		
Execution condition	-	Suitable Models	XD3
Hardware requirement	-	Software requirement	-
program ends [END]			
Execution condition	-	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands


Operands	Function	Data Type
None		-

3.	Suitable	Soft	Components
J.	Duitable	DOIL	Component

None

Description

Even though [FEND] instruction represents the end of the main program, the function is same to END to process the output/input, monitor the refresh of the timer, return to program step0.

- If program the tag of CALL instruction behind FEND instruction, there must be SRET instruction. If the interrupt pointer program behind FEND instruction, there must be IRET instruction.
- After executing CALL instruction and before executing SRET instruction, if execute FEND instruction; or execute FEND instruction after executing FOR instruction and before executing NEXT, an error will occur.
- In the condition of using many FEND instructions, please make program or subprogram between the last FEND instruction and END instruction.

4-4. Data compare function

Mnemonic	Function	Chapter
LD=	LD activates when $(S1) = (S2)$	4-4-1
LD>	LD activates when $(S1) > (S2)$	4-4-1
TD<	LD activates when $(S1) \le (S2)$	4-4-1
TD<>	LD activates when $(S1) \neq (S2)$	4-4-1
TD<=	LD activates when $(S1) \le (S2)$	4-4-1
TD>=	LD activates when $(S1) \ge (S2)$	4-4-1

AND=	AND activates when $(S1) = (S2)$	4-4-2
AND>	AND activates when $(S1) > (S2)$	4-4-2
AND<	AND activates when (S1) < (S2)	4-4-2
AND<>	AND activates when (S1)≠ (S2)	4-4-2
AND<=	AND activates when (S1)≤ (S2)	4-4-2
AND>=	AND activates when (S1)≥ (S2)	4-4-2
OR=	OR activates when $(S1) = (S2)$	4-4-3
OR>	OR activates when $(S1) > (S2)$	4-4-3
OR<	OR activates when $(S1) \le (S2)$	4-4-3
OR<>	OR activates when (S1)≠ (S2)	4-4-3
OR<=	OR activates when (S1)≤ (S2)	4-4-3
OR>=	OR activates when (S1)≥ (S2)	4-4-3

4-4-1. LD Compare [LD]

1. Summary

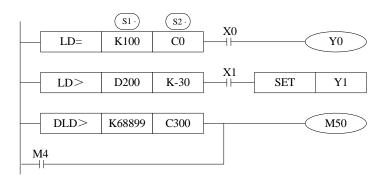
LD is the point compare instruction connected with the generatrix.

LD Compare [LD]			
16 bits	As below	32 bits	As below
Execution condition	-	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type

S1	Being compared number address	16/32bits, BIN
S2	Comparand address	16/32 bits, BIN


3. Suitable soft components

Word	Operand	d System							Constant	Мо	dule	
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•	•	•	•	•	•	•	•		
	S2	•	•	•	•	•	•	•	•	•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

16 bits instruction	32 bits instruction	Activate Condition	Not Activate Condition
LD=	DLD=	(S1)=(S2)	$(S1) \neq (S2)$
LD>	DLD>	(S1) > (S2)	$(S1) \le (S2)$
LD<	DLD<	(S1)< (S2)	$(S1) \ge (S2)$
TD<>	DLD<>	$(S1) \neq (S2)$	(S1) = (S2)
TD<=	DLD<=	$(S1) \leq (S2)$	(S1) > (S2)
TD>=	DLD>=	$(S1) \ge (S2)$	(S1) < (S2)

Note Items

- When the source data's highest bit (16 bits: b15, 32 bits: b31) is 1, the data is seemed to a negative number.
- The comparison of 32 bits counter should use 32 bits instruction. If using 16 bits instruction, the program or operation will be error.

4-4-2. Serial Compare [AND]

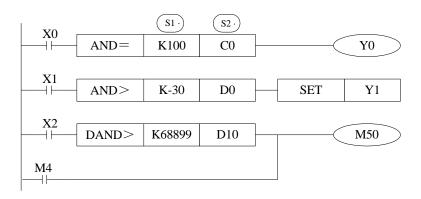
1. Summary

AND: serial connection comparison instruction.

AND Compare	[AND]		
16 bits	As Below	32 bits	As Below
Execution condition	Normally ON/OFF coil	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S1	Being compared number address	16/32bit, BIN
S2	Comparand address	16/32bit, BIN


3. suitable soft components

Word	Operand		System							Constant	Мо	dule
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•	•	•	•	•	•	•	•		
	S2	•	•	•	•	•	•	•	•	•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

16 bits instruction	32 bits instruction	Activate Condition	Not Activate Condition
	instruction		
AND=	DAND=	(S1) = (S2)	$(S1) \neq (S2)$
AND>	DAND>	(S1) > (S2)	$(S1) \le (S2)$
AND<	DAND<	(S1) < (S2)	$(S1) \ge (S2)$
AND<>	DAND<>	$(S1) \neq (S2)$	(S1) = (S2)
AND<=	DAND<=	$(S1) \le (S2)$	$(S1) \ge (S2)$
AND>=	DAND>=	$(S1) \ge (S2)$	(S1) < (S2)

Note Items

- ➤ When the source data's highest bit (16 bits: b15, 32 bits: b31) is 1, it is seemed to negative number.
- ➤ The comparison of 32 bits counter should use 32 bits instruction. If using 16 bits instruction, the program or operation will be error.

4-4-3. Parallel Compare [OR]

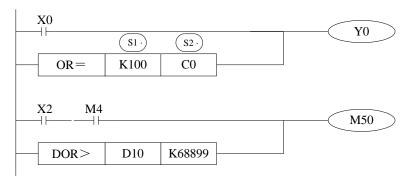
1. Summary

OR: parallel connection comparison instruction.

Parallel Compare	[OR]		
16 bits	As below	32 bits	As below
Execution condition	-	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S1	Being compared number address	16/32 bit,BIN
S2	Comparand address	16/32 bit,BIN


3. Suitable soft components

Operan	1			Sy	stem				Constant	Мо	dule
Word	D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
S1	•	•	•	•	•	•	•	•	•		
S2	•	•	•	•	•	•	•	•	•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

16 bits instruction	32 bits instruction	Activate Condition	Not Activate Condition
OR=	DOR=	(S1) = (S2)	$(S1) \neq (S2)$
OR>	DOR>	$(S1) \ge (S2)$	(S1) ≤ (S2)
OR<	DOR<	(S1) < (S2)	(S1) ≥ (S2)
OR<>	DOR<>	$(S1) \neq (S2)$	(S1) = (S2)
OR <=	DOR<=	$(S1) \le (S2)$	(S1) > (S2)
OR>=	DOR>=	$(S1) \ge (S2)$	(S1) < (S2)

Note Items

- ➤ When the source data's highest bit (16 bits: b15, 32 bits: b31) is 1, it is seemed to negative number.
- ➤ The comparison of 32 bits counter should use 32 bits instruction. If using 16 bits instruction, the program or operation will be error.

Example: forbid the outputs when it reaches the certain time. In the below program, when the date is June 30th, 2012, all the outputs will be disabled. The password 1234 is stored in (D4000, D4001). When the password is correct, all the outputs are enabled.

```
SMO
                              TRD
                                      D0
 D2 K30 D1 K6 D0 K12
                         D4000 K1234
                                         SM34
                 ⊣≥⊦
                             ₽≯
                                          (S)-
  D1 K7
          D0 K12
   ┦≫┞
  D0 K13
   ┦≫┞
D4000 K1234
                                         SM34
   -lD=l
                                          (R)
```

```
LD
       SM<sub>0</sub>
                             //SM0 is always ON coil
TRD
       D0
                         //read the RTC (real time clock) value and store in D0~D6
LD >= D2
               K30
                               //RTC date ≥30
AND>=
                      K6
                                      //RTC month \geq 6
               D1
AND>=
               D0
                      K12
                                       //RTC year ≥12
LD >= D1
                               //or RTC month \geq 7
               K7
AND>=
               D0
                      K12
                                       //RTC year \geq 12
ORB
                       //or
OR > = D0
               K13
                               //RTC year \geq 13
DAND<>
               D4000 K1234
                                   //and password ≠1234
SET
          SM34
                             //set ON M34, all the outputs are disabled
DLD= D4000 K1234
                              //password=1234, correct password
RST
       SM34
                           //reset M34, all the outputs are enabled
```

4-5. Data Move Instructions

Mnemonic	Function	Chapter
CMP	Data compare	4-5-1
ZCP	Data zone compare	4-5-2
MOV	Move	4-5-3
BMOV	Data block move	4-5-4
PMOV	Data block move (with faster speed)	4-5-5
FMOV	Fill move	4-5-6
EMOV	Float number move	4-5-7
FWRT	FlashROM written	4-5-8
MSET	Zone set	4-5-9
ZRST	Zone reset	4-5-10
SWAP	The high and low byte of the destinated devices are exchanged	4-5-11
XCH	Exchange two data	4-5-12

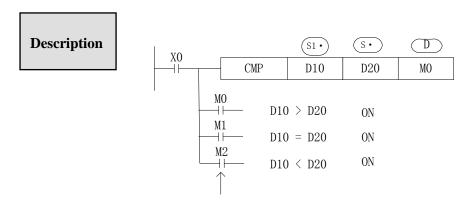
4-5-1. Data Compare [CMP]

1. Summary

Compare the two data, output the result.

Data compare [CM	[P]		
16 bits	СМР	32 bits	DCMP
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands


Operands	Function	Data Type
S1	Specify the data (to be compared) or soft component's address code	16 bit,BIN
S	Specify the comparand's value or soft component's address code	16 bit,BIN
D	Specify the compare result's address code	bit

3. Suitable soft component

Word	Operand				S	Constant	Мо	dule						
		D*	FD	TD*	CD)* I	DX	DY	DM*	DS*	K/H	ID	QD	
	S1	•	•	•	•	•	•	•	•	•	•			
	S	•	•	•	•	•	•	•	•	•	•			
Bit	Operand			;	Syste	m	ı			I	1	I		
		X	Y	M*	S*	T*	C*	Dn.r	n					
	D		•	•	•									

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S, HS; T includes T, HT; C includes C, HC.

Even X0=OFF to stop CMP instruction, M0~M2 will keep the original status

- $(D \cdot)$, $(D \cdot) +1$, $(D \cdot) +2$: the three soft components will show the compare result.

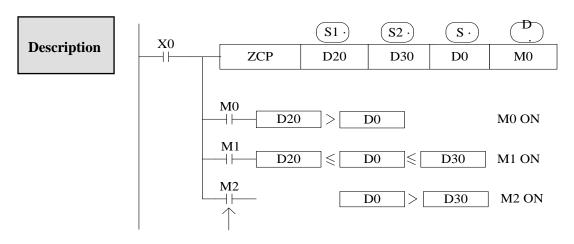
4-5-2. Data zone compare [ZCP]

1. Summary

Compare the current data with the data in the zone, output the result.

Data Zone compare [ZCP]											
16 bits	ZCP	32 bits	DZCP								
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3								
Hardware requirement	-	Software requirement	-								

2. Operands


Operands	Function	Data Type
S1	The low limit of zone	16 bit, BIN
S2	The high limit of zone	16 bit, BIN
S	The current data address	16 bit, BIN
D	The compare result	bit

3. Suitable soft components

	Operand	System									Constant	Module		
Word		D*	FD	TD*	C	\mathbb{D}^*	DX	DY	DM*	DS*	K/H	ID	QD	
	S1	•	•	•	•	,	•	•	•	•	•			
	S2	•	•	•	•	,	•	•	•	•	•			
	S	•	•	•	•	,	•	•	•	•	•			
		ı	1	1		<u> </u>						I		
	Operand			S	yste	em								
Bit		X	Y	M*	S*	T*	C*	Dn.m						
	D		•	•	•									

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S, HS; T includes T, HT; C includes C, HC.

Even X0=OFF stop ZCP instruction, M0~M2 will keep the original status

- \triangleright Compare \bigcirc S · with \bigcirc S1 and \bigcirc S2, output the three results starting from \bigcirc D ·

4-5-3. MOV [MOV]

1. Summary

Move the specified data to the other soft components

MOV [MOV]			
16 bits	MOV	32 bits	DMOV
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

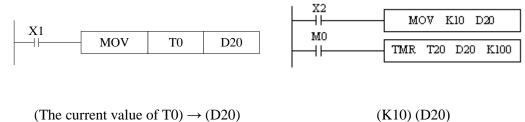
Operands	Function	Data Type
S	Specify the source data or register's address code	16 bit/32 bit, BIN
D	Specify the target soft component's address code	16 bit/32 bit, BIN

3. Suitable soft component

Word	Operand		System						Constant	Мо	dule	
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•	•	•	
	D	•		•	•		•	•	•			•

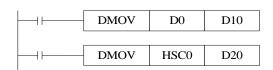
*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description


- Move the source data to the target
- When X0 is off, the data will not change
- Move K10 to D10

<read the counter or timer current value>

<indirect set the timer value>


D20=K10

(The current value of T0) \rightarrow (D20)

< Move the 32bits data >

Please use DMOV when the value is 32 bits, such as MUL instruction, high speed counter...

 $(D1, D0) \rightarrow (D11, D10)$ (the current value of HSC0) \rightarrow (D21, D20)

4-5-4. Data block Move [BMOV]

1. Summary

Move the data block to other soft component

Data block move [BMOV]							
16 bits	BMOV	32 bits	-				
Execution condition	Normally ON/OFF coil, rising/falling edge	Suitable Models	XD3				
Hardware requirement	-	Software requirement	-				

2. Operands

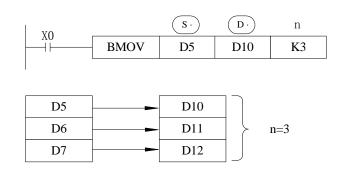
Operands	Function	Data Type
S	Specify the source data block or soft component address code	16 bits, BIN; bit
D	Specify the target soft components address code	16 bits, BIN; bit
n	Specify the move data's number	16 bits, BIN;

3. Suitable soft components

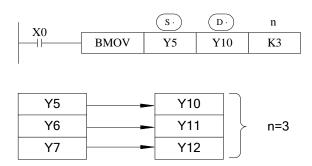
Word	Operand		System				Constant	Мо	dule			
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•			
	D	•		•	•		•	•	•			
	n	•		•	•	•		•	•	•		

Bit

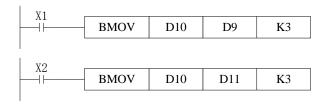
Operand		System					
	X	Y	M*	S*	T*	C*	Dn.m
S	•	•	•				
D	•	•	•				

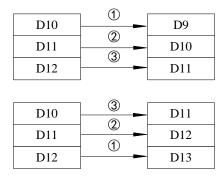

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S, HS; T includes T and HT; C includes C and HC.


Description

➤ Move the source data block to the target data block. The data quantity is n.


<word move>



bit move>

As the following picture, when the data address overlapped, the instruction will do from 1 to 3.

4-5-5. Data block Move [PMOV]

1. Summary

Move the specified data block to the other soft components

Data block mo	v[PMOV]		
16 bits	PMOV	32 bits	-
Execution condition	Normally ON/OFF coil, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

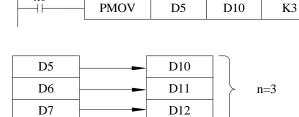
2. Operands

Operands	Function	Data Type
S	Specify the source data block or soft component address	16 bits, BIN; bit
D	Specify the target soft components address	16 bits, BIN; bit

n	Specify the data quantity	16 bits, BIN;

3. Suitable soft components

ord	Operand				S	ystem				Constant	Module		
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	S	•	•	•	•	•	•	•	•				
	D	•		•	•		•	•	•				
	n	•		•	•		•	•	•	•			
Bit	Operand	Operand System											
		X	Y	M*	S*	T* C	Dn.r	n					
	S	•	•	•									
	D	•	•	•									


*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S, HS; T includes T and HT; C includes C and HC.

Move the source data block to target data block, the data quantity is n

 (\mathbf{s})

- The function of PMOV and BMOV is mostly the same, but the PMOV execution speed is faster.
- PMOV finish in one scan cycle, when executing PMOV, close all the interruptions.
- Mistake may happen if the source address and target address are overlapped.

4-5-6. Fill Move [FMOV]

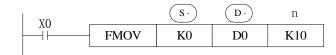
1. Summary

Move the specified data to the other soft components

Fill Move [FMOV]										
16 bits	FMOV	32 bits	DFMOV							
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3							
Hardware requirement	-	Software requirement	-							

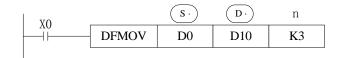
2. Operands

Operands	Function	Data Type
S	Specify the source data or soft component address	16/32 bits, BIN;
D	Specify the target soft components address	16/32 bits, BIN;
n	Specify the move data's number	16/32 bits, BIN;

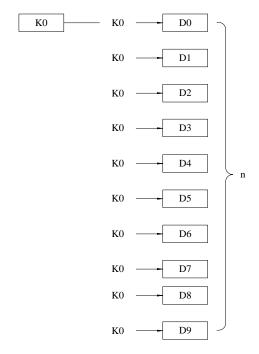

3. Suitable soft component

D* FD TD* CD* DX DY DM* DS* K/H ID QD S •	Word	Operand	Operand System Co.					System								
D • • • • •			D*	D* FD TD* CD* DX DY DM* DS* 1								ID	QD			
		S	•	•	•	•	•	•	•	•	•					
n • • • • • •		D	•		•	•		•	•	•						
		n	•		•	•		•	•	•	•					

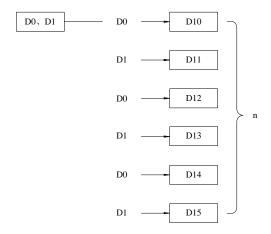
*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.


Description

<16 bits instruction>


- ➤ Move K0 to D0~D9, copy a single data device to a range of destination device
- Move the source data to target data, the target data quantity is n
- ➤ If the set range exceeds the target range, move to the possible range

<32 bits instruction >



• Move D0.D1 to D10.D11:D12.D13:D14.D15.

<16 bits Fill Move >

<32 bits Fill move>

4-5-7. Floating move [EMOV]

1. Summary

Move the float number to target address

Floating move [EMOV]											
16 bits	-	32 bits	EMOV								
Execution condition	Normally on/off, edge trigger	Suitable models	XD3								
Hardware	-	Software	-								

2. Operands

Operand	Function	Туре
S	Source soft element address	32 bits, BIN
D	Destination soft element address	32 bits, BIN

3. Suitable soft element


Word	Operand				Constant	Мо	dule					
		D*	FD	TD^*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•			•	•	•	•	•		
	D	•					•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

<32 bits instruction>

Binary floating → binary floating

$$(D1, D0) \rightarrow (D11, D10)$$

- X0 is ON, send the floating number from (D1, D0) to (D11, D10).
- X0 is OFF, the instruction doesn't work

$$(K500) \rightarrow (D11, D10)$$

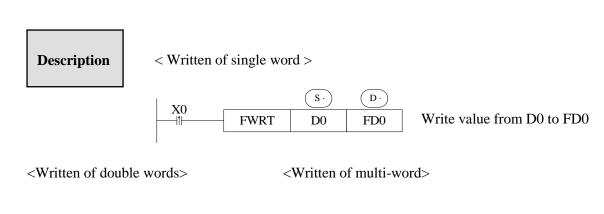
- If constant value K, H is source soft element, they will be converted to floating number.
- K500 will be converted to floating value.

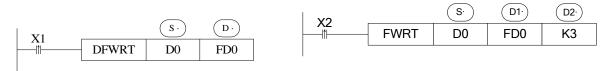
4-5-8. FlashROM Write [FWRT]

1. Summary

Write the specified data to FlashRom register.

FlashROM Wri	te [FWRT]		
16 bits	FWRT	32 bits	DFWRT
Execution condition	rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-


2. Operands


Operands	Function	Data Type
S	The data write in the source or save in the soft element	16 bits/32 bits, BIN
D	target soft element	16 bits/32 bits
D1	target soft element start address	16 bits/32 bits
D2	Write in data quantity	16 bits/32 bits, BIN

3. Suitable soft components

	Operand				Sy	stem				Constant	Mo	dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•	•		
	D		•									
	D1		•									
	D2	•		•	•	•	•	•	•	•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Write value from D0,D1 to FD0,FD1

Write value from D0, D1, D2 to FD0, FD1, FD2

- *1: FWRT instruction only can write data into FlashRom register. FlashRom can keep the data even the power supply is off. It can store the important technical parameters.
- *2: Written of FWRT needs a long time, about 150ms, so frequently write-in is not recommended
- *3: The written time of Flashrom is about 1,000,000 times. So we suggest using edge signal (LDP, LDF etc.) to activate the instruction.
- *4: Frequently write-in will damage the FlashRom.

4-5-9. Zone set [MSET]

1. Summary

Set the soft element in certain range

Multi-set [MS	SET]		
16 bits	MSET	32 bits	-
Execution condition	Normally ON/OFF; falling or rising pulse edge signal	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
D1	Start soft element address	bit
D2	End soft element address	bit

3. Suitable soft components

Bit	Operand				Syste	em		
		X	Y	M*	S*	T*	C*	Dn.m
	D1	•	•	•	•	•	•	
	D2	•	•	•	•	•	•	
	D2	•	•	•	•	•	•	

*Notes: M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

- \bullet \bigcirc \bigcirc \bigcirc \bigcirc are specified as the same type of soft component, and \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
- When $\bigcirc D1$ > $\bigcirc D2$, will not run Zone set, but set SM409 SD409 = 2

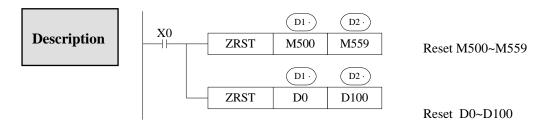
4-5-10. Zone reset [ZRST]

1. Summary

Reset the soft element in the certain range

Multi-reset [ZR	ST]		
16 bits	ZRST	32 bits	-
Execution condition	Normally ON/OFF, falling or rising pulse edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands


Operands	Function	Data Type
D1	Start address of soft element	Bit, 16 bits,BIN
D2	End address of soft element	Bit, 16 bits,BIN

3. Suitable soft components

	Operand		System							Constant	Mo	dule	
Word		D*	FD	TI)*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	D1	•					•	•	•				
	D2	•				•	•	•	•				
Bit	Operand System												
		X	Y	M*	S*	T*	C*	Dn.m					
	D1	•	•	•	•	•	•						
	D2	•	•	•	•	•	•						

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

- ullet (D1) (D2) Are specified as the same type of soft units, and (D1) < (D2)
- When (D1) > (D2), only reset the specified soft unit, and set SM409, SD409 = 2.

Other Reset Instruction

- > RST can reset one soft component. The operand can be Y, M, HM, S, HS, T, HT, C, HC, TD, HTD, CD, HCD, D, HD
- ➤ FMOV can move 0 to these soft components: DX, DY, DM, DS, T(TD), HT(HTD), C(CD), HC(HCD), D, HD

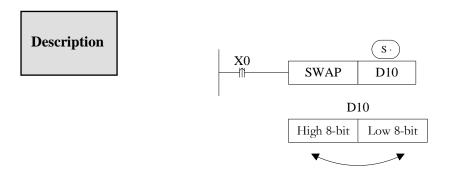
4-5-11. Swap the high and low byte [SWAP]

1. Summary

Swap the high and low byte of specified register

High and low by	yte swap [SWAP]		
16 bits	SWAP	32 bits	-
Execution condition	Falling or rising pulse edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands


Operands	Function	Data Type

I	S	The address of the soft element	16 bits; BIN

3. Suitable soft components

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Word	Operand				Sy	stem				Constant	Мо	dule
S • •			D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
		S	•		•	•							

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

- Exchange the high 8-bit and low 8-bit of 16-bit register.
- If this instruction is activated by normal ON/OFF coil, the instruction will be executed in every scanning period when X0 is ON. Falling or rising pulse is recommended to activate the instruction.

4-5-12. Exchange [XCH]

1. Summary

Exchange the data in two soft element

Exchange [XCH	I]		
16 bits	ХСН	32 bits	DXCH
Execution condition	Rising or falling pulse edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
D1	The soft element address	16 bits/32 bits, BIN
D2	The soft element address	16 bits/32 bits, BIN

3. Suitable soft component

Word	Operand				Sy	Constant	Mo	dule				
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	D1	•		•	•		•	•	•			
	D2	•		•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

<16 bits instruction>

Before (D10) =100
$$\rightarrow$$
 After (D10) =101
(D11) =101 (D11) =100

- The contents of the two destination devices D1 and D2 are swapped,
- When X0 is ON, the instruction will be executed in every scanning period. Falling or rising pulse is recommended to activate the instruction.

<32 bits instruction >

• 32 bits instruction [DXCH] swaps the dword value D10, D11 and D20, D21.

Before (D10) = 100
$$\rightarrow$$
 after (D10) = 200

$$(D11) = 1$$
 $(D11D10) = 65636$ $(D11) = 10$ $(D11D10) = 655460$

$$(D20) = 200$$
 $(D20) = 100$

$$(D21) = 10$$
 $(D21D20) = 655460$ $(D21) = 1$ $(D21D20) = 65636$

4-6. Data Operation Instructions

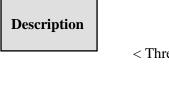
Mnemonic	Function	Chapter
ADD	Addition	4-6-1
SUB	Subtraction	4-6-2
MUL	Multiplication	4-6-3
DIV	Division	4-6-4
INC	Increment	4-6-5
DEC	Decrement	4-6-5
MEAN	Mean	4-6-6
WAND	Logic Word And	4-6-7
WOR	Logic Word Or	4-6-7
WXOR	Logic Exclusive Or	4-6-7
CML	Compliment	4-6-8
NEG	Negation	4-6-9

4-6-1 Addition [ADD]

1. Summary

Add two numbers and store the result

Add [ADD]			
16 bits	ADD	32 bits	DADD
Execution condition	Normal ON/OFF/falling or rising pulse edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

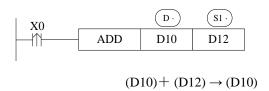

2. Operands

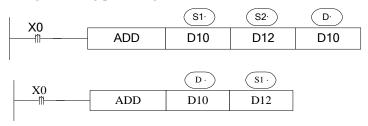
Operands	Function	Data Type
Three operands	L	I
S1	The add operation data address	16 bit/32 bit, BIN
S2	The add operation data address	16 bit/32bit, BIN
D	The result address	16 bit/32bit, BIN
Two operands		<u> </u>
D	Be Added data and result data address	16 bit/32bit, BIN
S1	Add data address	16 bit/32bit, BIN

3. Suitable soft components

	Operand				Sy	stem				constant	Мо	dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	Three ope	rands	3								<u>I</u>	
	S1	•	•	•	•	•	•	•	•	•		
	S2	•	•	•	•	•	•	•	•	•		
	D	•		•	•		•	•	•			
	Two opera	ands			<u> </u>							
	D	•										
	S1	•	•							•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.


< Three operands>


$$(D10) + (D12) \rightarrow (D14)$$

- ➤ Two source data do binary addition and send the result to target address. Each data's highest bit is the sign bit, 0 stands for positive, 1 stands for negative. All calculations are algebraic processed. (5+ (-8) =-3)
- ➤ If the result of a calculation is "0", the "0" flag acts. If the result exceeds 323767 (16 bits limit) or 2147483647 (32 bits limit), the carry flag acts. (refer to the next page). If the result exceeds -323768 (16 bits limit) or -2147483648 (32 bits limit), the borrow flag acts (refer to the next page).
- ➤ When doing 32 bits operation, word device's low 16 bits are assigned; the device close to the preceding device's is the high bits. To avoid ID repetition, we recommend you assign device's ID to be even number.
- ➤ The source and target address can be the same. In the above example, when X0 is ON, the instruction will be executed in every scanning period.

<Two operands>

- ➤ Two source data do binary addition and send the result to addend data address. Each data's highest bit is the sign bit, 0 stands for positive, 1 stands for negative. All calculations are algebraic processed. (5+ (-8) =-3)
- ➤ If the result of a calculation is "0", the "0" flag acts. If the result exceeds 323767 (16 bits limit) or 2147483647 (32 bits limit), the carry flag acts. (refer to the next page). If the result exceeds -323768 (16 bits limit) or -2147483648 (32 bits limit), the borrow flag acts (refer to the next page).
- ➤ When doing 32 bits operation, word device's low 16 bits are assigned; the device close to the preceding device's is the high bits. To avoid ID repetition, we recommend you assign device's ID to be even number.
- ➤ In the above example, when X0 is ON, the instruction will be executed in every scanning period. The rising or falling pulse edge is recommended to activate the instruction.

The two instructions are the same.

Flag meaning

Flag	Name	Function
SM020	Zero	ON: the calculate result is zero
5101020	Zelo	OFF: the calculate result is not zero
		ON: the calculate result is over -32768(16 bit) or -
		2147483648(32bit)
SM021	Borrow	
		OFF: the calculate result is less than -32768(16 bit) or -
		2147483648(32bit)
SM022	Carry	ON: the calculate result is over 32768(16 bit) or 2147483648(32bit)

	OFF: the calculate result is less than 32768(16 bit) or
	2147483648(32bit)

4-6-2. Subtraction [SUB]

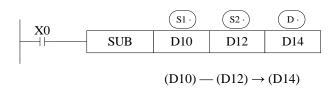
1. Summary

Two numbers do subtraction, store the result

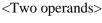
Subtraction [SU	[B]		
16 bits	SUB	32 bits	DSUB
Execution condition	Normally ON/OFF/rising or falling pulse edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

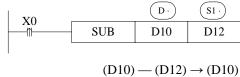
2. Operands

Operands	Function	Data Type
Three oper	ands	
S1	The sub operation data address	16 bits /32 bits,BIN
S2	The sub operation data address	16 bits /32 bits,BIN
D	The result address	16 bits /32 bits,BIN
Two opera	nds	
D	Be subtracted data and result address	16 bits /32 bits,BIN
S1	Subtract data address	16 bits /32 bits,BIN

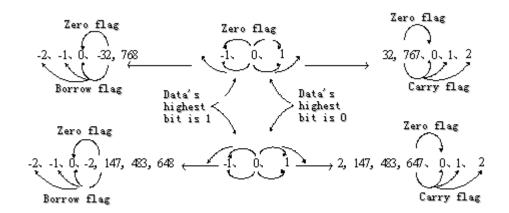

3. Suitable soft component

	Operand				Sys	stem				Constant	Мо	dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	К/Н	ID	QD
	Three ope	rands									I	
	S1	•	•	•	•	•	•	•	•	•		
	S2	•	•	•	•	•	•	•	•	•		
	D	•		•	•		•	•	•			
	Two opera	ands							l		I	
	D	•										
	S1	•	•							•		


*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.


Description

<Three operands>


- ➤ S1) appoint the soft unit's content, subtract the soft unit's content appointed by S2) in the format of algebra. The result will be stored in the soft unit appointed by D. (5-(-8)=13)
- ➤ The action of each flag, the setting method of 32 bits operation's soft units are both the same with the preceding ADD instruction.
- ➤ The importance is: in the preceding program, if X0 is ON, SUB operation will be executed every scan cycle.
- ➤ Refer to chapter 4-6-1 for flag action and functions.

- ➤ (S1) appoint the soft unit's content, subtract the soft unit's content appointed by (S2) in the format of algebra. The result will be stored in the soft unit appointed by (D.). (5-(-8)=13)
- ➤ The action of each flag, the setting method of 32 bits operation's soft units are both the same with the preceding ADD instruction.
- ➤ The importance is: in the preceding program, if X0 is ON, SUB operation will be executed every scan cycle. Rising or falling pulse edge is recommended to activate the instruction.
- ➤ Refer to chapter 4-6-1 for flag action and functions.

The relationship of the flag's action and vale's positive/negative is shown below:

4-6-3. Multiplication [MUL]

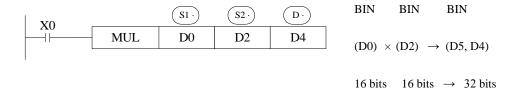
1. Summary

Multiply two numbers, store the result

Multiplication	[MUL]		
16 bits	MUL	32 bits	DMUL
Execution condition	Normally ON/OFF / pulse edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

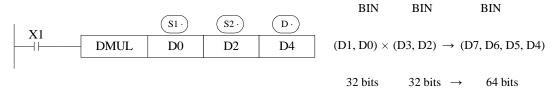
2. Operands

Operands	Function	Data Type
S1	The multiplication operation data address	16 bits/32bits,BIN
S2	The multiplication operation data address	16 bits/32bits,BIN
D	The result address	16 bits/32bits,BIN


3. Suitable soft component

XX 1	Operand				Constant	Мо	dule					
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•	•	•	•	•	•	•	•		
	S2	•	•	•	•	•	•	•	•	•		
	D	•		•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.



<16 bits Operation>

- ➤ The contents of the two source devices are multiplied together and the result is stored at the destination device in the format of 32 bits. As the above chart: when (D0)=8, (D2)=9, (D5, D4) =72.
- The result's highest bit is the symbol bit: positive (0), negative (1).
- ➤ In the above example, when X0 is ON, the instruction will be executed in every scanning period.

<32 bits Operation >

- ➤ When use 32 bits operation, the result is stored at the destination device in the format of 64 bits.
- > Even use word device, 64 bits results can't be monitored.
- > Please change to floating value operation for this case.

4-6-4. Division [**DIV**]

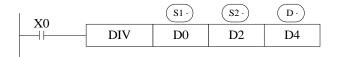
1. Summary

Divide two numbers and store the result

Division [DIV]			
16 bits	DIV	32 bits	DDIV
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

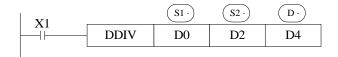
Operands	Function	Data Type
S1	The divide operation data address	16 bits / 32 bits, BIN
S2	The divide operation data address	16 bits /32 bits, BIN
D	The result address	16 bits /32 bits, BIN


3. Suitable soft components

	QD	Mo	Constant	System								Operand	Word
S1 • • • • • • • •		ID	K/H	DS*	DM*	DY	DX	CD*	TD*	FD	D*		
			•	•	•	•	•	•	•	•	•	S1	
S2 • • • • • • •			•	•	•	•	•	•	•	•	•	S2	
D • • • • •				•	•	•		•	•		•	D	

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description


<16 bits operation >

Dividend Divisor Result Remainder BIN BIN BIN BIN $(D0) \div (D2) \rightarrow (D4) --- (D5)$ 16 bits 16 bits 16 bits 16 bits

- ➤ (S1) appoints the dividend soft component, (S2) appoints the divisor soft component, (D.) and the next address appoint the soft component of the result and the remainder.
- ➤ In the above example, if input X0 is ON, devision operation is executed every scan cycle.

<32 bits operation >

Dividend Divisor Result Remainder

BIN BIN BIN BIN

(D1, D0) ÷ (D3, D2) (D5, D4) --- (D7, D6)

32 bits 32 bits 32 bits 32 bits

- The dividend is composed by the device appointed by S1 and the next one. The divisor is composed by the device appointed by S2 and the next one. The result and the remainder are stored in the four sequential devices, the first one is appointed by D.
- ➤ If the value of the divisor is 0, the instruction will be error.
- ➤ The highest bit of the result and remainder is the symbol bit (positive:0, negative: 1). When any of the dividend or the divisor is negative, then the result will be negative. When the dividend is negative, then the remainder will be negative.

4-6-5. Increment [INC] & Decrement [DEC]

1. Summary

Increase or decrease the number

Increase one [IN	NC]		
16 bits	INC	32 bits	DINC
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-
Decrease one [I	DEC]		
16 bits	DEC	32 bits	DDEC
Execution	Normally ON/OFF,	Suitable	XD3

condition	rising/falling edge	Models	
Hardware	-	Software	-
requirement		requirement	

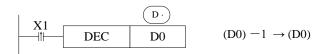
2. Operands

Operands	Function	Data Type
D	The increase or decrease data address	16 bits / 32bits,BIN

3. Suitable soft components

Word	Word	Operand	System						Constant	Mo	dule	
D [*] FD TD [*] CD [*] DX DY DM [*] DS [*] K/H ID QD	woru]	D* FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
D • • • • • •		D	•	•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.


Description

< Increment [INC]>

$$X0$$
 INC D0 (D0) $+1\rightarrow$ (D0)

- ➤ D· will increase one when X0 is ON.
- ➤ For 16 bits operation, when +32767 increase one, it will become -32768; for 32 bits operation, +2147483647 increases one is -2147483647. The flag bit will act.

<Decrement [DEC]>

- \triangleright \bigcirc \bigcirc will decrease one when X1 is ON.
- \succ -32767 or -2147483647 decrease one, the result will be +32767 or +2147483647. The flag bit will act.

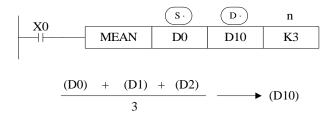
4-6-6. Mean [MEAN]

1. Summary

Get the mean value of data

Mean [MEAN]			
16 bits	MEAN	32 bits	DMEAN
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands


Operands	Function	Data Type
S	The source data start address	16 bits, BIN
D	The mean result address	16 bits, BIN
n	The data quantity	16 bits, BIN

3. Suitable soft components

	Operand		System							Constant	Мо	dule
Word		D ^{*注}	FD	TD*注	CD管	DX	DY	DM ^牲	DS 注	K/H	ID	QD
	S	•	•	•	•		•	•	•			
	D	•		•	•		•	•	•			
	n									•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

- > Store the mean value of source data (source sum divide by source quantity n). give the remainder.
- ➤ The n cannot larger than soft component quantity, otherwise there will be error.

4-6-7. Logic AND [WAND], Logic OR[WOR], Logic Exclusive OR [WXOR]

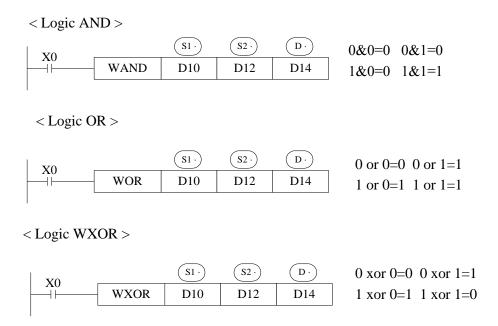
1. Summary

Do logic AND, OR, XOR for data

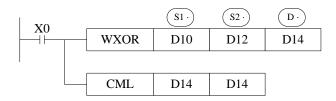
Logic AND [V	VAND]		
16 bits	WAND	32 bits	DWAND
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-
Logic OR[WO	R]		
16 bits	WOR	32 bits	DWOR
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

Logic Exclusiv	re OR [WXOR]		
16 bits	WXOR	32 bits	DWXOR
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands


Operands	Function	Data Type
S1	The operation data address	16bit/32bit,BIN
S2	The operation data address	16bit/32bit,BIN
D	The result address	16bit/32bit,BIN

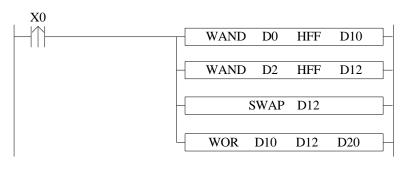
3. Suitable soft components


	Operand			Constant	Mo	dule						
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•	•	•	•	•	•	•	•		
	S2	•	•	•	•	•	•	•	•	•		
	D	•		•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

If use this instruction along with CML instruction, XOR NOT operation could also be executed.


Example 1:

The 16 bits data is composed by X0~X7, and store in D0.

Transform the state of X0, X1, X2, X3 to 8421 code and store in D0.

Example 2:

Combine the low 8 bits of D0 and D2 to a word.

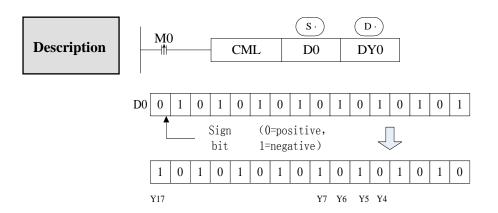
LDP X0 //X0 rising edge $WAND\,D0$ HFF D10 //Logic and, take the low 8 bits of D0 and save in D10 WAND D2 **HFF** D12 // Logic and, take the low 8 bits of D2 and save in D12 SWAP D12 //swap the low 8 bits and high 8 bits of D12 WOR D10 D20 D12 //combine the low 8 bits of D10 and high 8 bits of D12, and save in D20

4-6-8. Logic converse [CML]

1. Summary

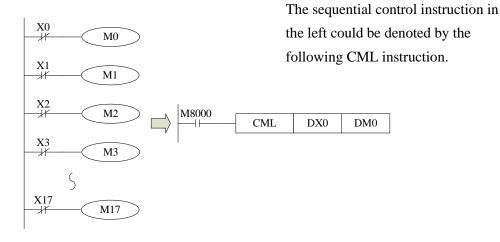
Logic converse the data

Converse [CMI	.]		
16 bits	CML	32 bits	DCML
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-


2. Operands

Operands	Function	Data Type
S	Source data address	16 bits/32 bits, BIN
D	Result address	16 bits/32 bits, BIN

3. Suitable soft components


S • • • • • • • •	***	Operand				Sy	stem				Constant	Mo	dule
	Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
		S	•	•	•	•	•	•	•	•	•		
		D	•		•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

- \triangleright Each data bit in the source device is reversed $(1 \rightarrow 0, 0 \rightarrow 1)$ and sent to the destination device. If use constant K in the source device, it can be auto convert to be binary.
- ➤ This instruction is fit for PLC logical converse output.

< Read the converse input >

4-6-9. Negative [NEG]

1. Summary

Get the negative data

Negative [NEG]			
16 bits	NEG	32 bits	DNEG
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
D	The source data address	16 bits/ 32 bits, BIN

3. Suitable soft components

D° FD TD° CD° DX DY DM° DS° K/H ID QD	Word	Operand				Sy	stem				Constant	Мо	dule
D • • • • •	Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
		D	•		•	•		•	•	•			


*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

 \triangleright Converse each bit of source data $(1\rightarrow0, 0\rightarrow1)$, then plus one and store the result in the source data address.

For example, the source data D10 is 20, when M0 rising edge is coming, D10 become -20. The following two instructions are the same.

4-7. Shift Instructions

Mnemonic	Function	Chapter
SHL	Arithmetic shift left	4-7-1
SHR	Arithmetic shift right	4-7-1
LSL	Logic shift left	4-7-2
LSR	Logic shift right	4-7-2
ROL	Rotation left	4-7-3
ROR	Rotation right	4-7-3
SFTL	Bit shift left	4-7-4
SFTR	Bit shift right	4-7-5
WSFL	Word shift left	4-7-6
WSFR	Word shift right	4-7-7

4-7-1. Arithmetic shift left [SHL], Arithmetic shift right [SHR]

1. Summary

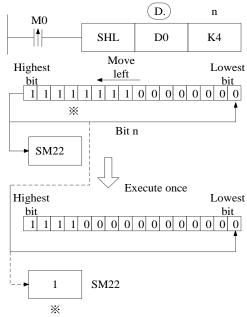
Do arithmetic shift left/right for the numbers

Arithmetic shift l	eft [SHL]		
16 bits	SHL	32 bits	DSHL
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware	-	Software	-
requirement		requirement	
Arithmetic shift 1	right [SHR]		
16 bits	SHR	32 bits	DSHR
Execution	Normally ON/OFF,	Suitable Models	XD3
condition	rising/falling edge		
Hardware	-	Software	-
requirement		requirement	

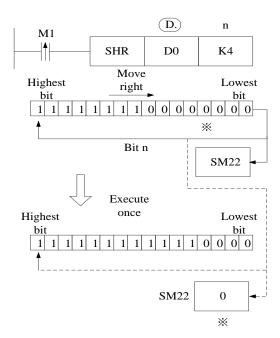
2. Operands

Operands	Function	Data Type
D	The source data address	16bit/32bit,BIN
n	Shift left or right times	16bit/32bit,BIN

3. Suitable soft components


W71	Operand System Constant											dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	D	•		•	•		•	•	•			
	n									•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.


Description

- After executing SHL once, the lowest bit is filled with 0, the last bit is stored in carry flag.
- After executing SHR once, the highest bit is the same; the last bit is stored in carry flag.

< Arithmetic shift left >

< Arithmetic shift right >

4-7-2. Logic shift left [LSL], Logic shift right [LSR]

1. Summary

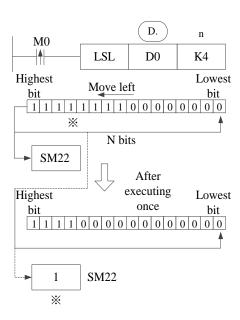
Do logic shift right/left for the data

Logic shift left [I	LSL]		
16 bits	LSL	32 bits	DLSL
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-
Logic shift right	[LSR]		
16 bits	LSR	32 bits	DLSR
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
D	Source data address	16 bits/32 bits, BIN
n	Arithmetic shift left/right times	16 bits/32bits, BIN

3. Suitable soft components


XX 1	Operand				Sy	stem				Constant	Мо	dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	D	•		•	•		•	•	•			
	n									•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

- After executing LSL once, the lowest bit is filled with 0; the last bit is stored in carry flag.
- LSL meaning and operation are the same to SHL.
- After executing LSR once, the highest bit is filled with 0; the last bit is stored in carry flag.
- LSR and SHR are different, LSR add 0 in the highest bit when moving, SHR all bits are moved.

< Logic shift left >

< Logic shift right >

4-7-3. Rotation shift left [ROL], Rotation shift right [ROR]

1. Summary

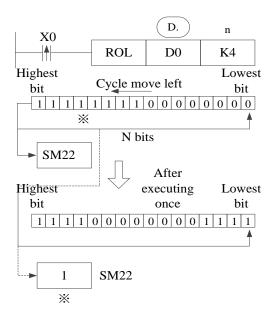
Cycle shift left or right

Rotation shift le	eft [ROL]		
16 bits	ROL	32 bits	DROL
Execution condition	rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-
Rotation shift ri	ght [ROR]	·	
16 bits	ROR	32 bits	DROR
Execution condition	rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

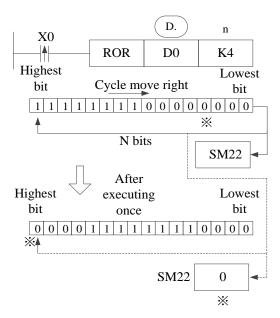
2. Operands

Operands	Function	Data Type
D	Source data address	16 bits/32 bits, BIN
n	Shift right or left times	16 bits/32 bits, BIN

3. Suitable soft components


Word	Operand		System Constant Module											
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD		
	D	•		•	•		•	•	•					
	n									•				

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.


Description

• When X0 changes from OFF to ON, the value will be cycle moved left or right, the last bit is stored in carry flag.

< Cycle shift left >

< Cycle shift right >

4-7-4. Bit shift left [SFTL]

1. Summary

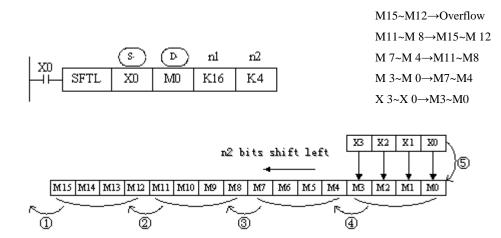
Bit shift left

Bit shift left [S	FTL]		
16 bits	SFTL	32 bits	DSFTL
Execution condition	rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Types
S	Source soft element head address	bit
D	Target soft element head address	bit
n1	Source data quantity	16 bits /32 bits, BIN
n2	Shift left times	16 bits/32 bits, BIN

3. Suitable soft components


Word	Operand					Sy	stem	Constant	Mo	dule				
Word		D*	FD	TL)*	CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	n1	•		•		•	•	•	•	•	•			
	n2	•		•		•	•	•	•	•	•			
	01		1	1			l							
Bit	Operand				Syst	em								
		X	Y	M*	S*	T*	C*	Dn.m						
	S	•	•	•	•	•	•							
	D		•	•	•	•	•		1					

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S, HS; T includes T, HT; C includes C, HC.

Description

- Move n2 bits left for the object which contains n1 bits.
- When X0 changes from OFF to ON, the instruction will move n2 bits for the object.
- For example, if n2 is 1, the object will move 1 bit left when the instruction executes once.

4-7-5. Bit shift right [SFTR]

1. Summary

Bit shift right

Bit shift right [SFTR]		
16 bits	SFTR	32 bits	DSFTR
Execution condition	rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S	Source soft element head address	bit
D	Target soft element head address	bit
n1	Source data quantity	16 bits/32 bits, BIN
n2	Shift right times	16 bits/32 bits, BIN

3. Suitable soft components


Word	Operand				Sy	stem	Constant	Мо	dule				
Word	D° FD TD° CD° DX DY DM° DS° K/H ID QD												
	n1	•		•	•	•	•	•	•	•			
	n2	•		•	•	•	•	•	•	•			
	Operan		X Y	M*	Syste		C* D	n.m					
Bit	S	-	• •	•	•	• (•						
	D		•	•	•	• ,	•						

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S, HS; T includes T, HT; C includes C, HC.

Description

- Move n2 bits right for the object which contains n1 bits.
- When X0 changes from OFF to ON, the instruction will move n2 bits for the object.
- For example, if n2 is 1, the object will move 1 bit right when the instruction executes once.

4-7-6. Word shift left [WSFL]

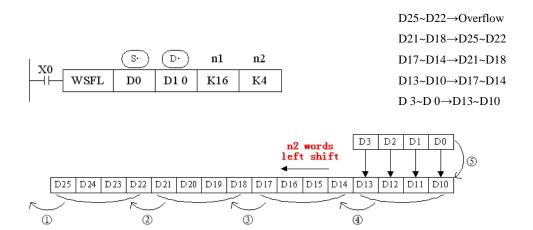
1. Summary

Word shift left

Word shift left [Word shift left [[WSFL]												
16 bits	WSFL	32 bits	-										
Execution condition	rising/falling edge	Suitable Models	XD3										
Hardware requirement	-	Software requirement	-										

2. Operands

Operands	Function	Data Type
S	Source soft element head address	16 bits, BIN
D	Target soft element head address	16 bits, BIN
n1	Source data quantity	16 bits, BIN
n2	Word shift left times	16 bits, BIN


3. Suitable soft components

Word	Operand				Sy	stem				Constant	Мо	dule	
		D*	FD	TD^*	CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	S	•	•	•	•	•	•	•	•				
	D	•		•	•		•	•	•				
	n1	•		•	•		•	•	•	•			
	n2	•		•	•		•	•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

- Move n2 words left for the object which contains n1 words.
- When X0 changes from OFF to ON, the instruction will move n2 words for the object.

4-7-7. Word shift right [WSFR]

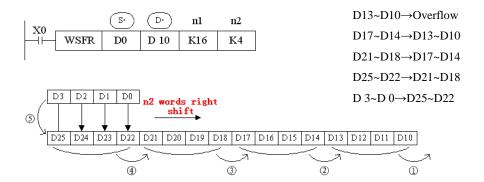
1. Summary

Word shift right

Word shift right	Word shift right [WSFR]											
16 bits	WSFR	32 bits	-									
Execution condition	rising/falling edge	Suitable Models	XD3									
Hardware requirement	-	Software requirement	-									

2. Operands

Operands	Function	Data Type
S	Source soft element head address	16 bits, BIN
D	Target soft element head address	16 bits, BIN
n1	Source data quantity	16 bits, BIN
n2	Shift right times	16 bits, BIN


3. Suitable soft components

Word	Operand				Sy	stem				Constant	Mo	dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•			
	D	•		•	•		•	•	•			
	n1	•		•	•		•	•	•	•		
	n2	•		•	•		•	•	•	•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

- Move n2 words right for the object which contains n1 words.
- When X0 changes from OFF to ON, the instruction will move n2 words for the object.

4-8. Data Convert

Mnemonic	Function	Chapter
WTD	Single word integer converts to double word integer	4-8-1
FLT	16 bits integer converts to float point	4-8-2
DFLT	32 bits integer converts to float point	4-8-2
FLTD	64 bits integer converts to float point	4-8-2
INT	Float point converts to integer	4-8-3
BIN	BCD convert to binary	4-8-4
BCD	Binary converts to BCD	4-8-5
ASCI	Hex. converts to ASCII	4-8-6
HEX	ASCII converts to Hex.	4-8-7
DECO	Coding	4-8-8
ENCO	High bit coding	4-8-9
ENCOL	Low bit coding	4-8-10
GRY	Binary converts to gray code	4-8-11

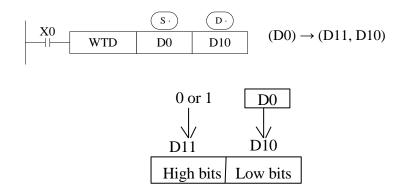
GBIN	Gray code converts to binary	4-8-12

4-8-1. Single word integer converts to double word integer [WTD]

1. Summary

Single word integer converts to double word integer [WTD]												
16 bits	WTD	32 bits	-									
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3									
Hardware requirement	-	Software requirement	-									

2. Operands


Operands	Function	Data Type
S	Source soft element address	16 bits, BIN
D	Target soft element address	32 bits, BIN

3. Suitable soft components

Word	Operand		System						Constant	Мо	dule	
		D*	FD*	TD*	CD*	DX	DY	DM*	DSV	K/H	ID	QD
	S	•	•	•	•	•	•	•	•			
	D	•		•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

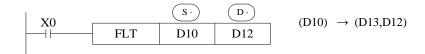
Description

- When single word D0 is positive integer, after executing this instruction, the high bit of double word D10 is 0.
- When single word D0 is negative integer, after executing this instruction, the high bit of double word D10 is 1.
- the high bit 0 and 1 is binary value.

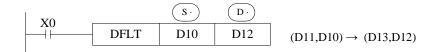
4-8-2. 16 bits integer converts to float point [FLT]

1. Summary

16 bits integer converts to float point [FLT]													
16 bits	FLT 32 bits DFLT 64 bits FLTD												
Execution condition	Normally ON/ rising/falling e		Suitable Models	XD3									
Hardware requirement	-		Software requirement	-									


Operands	Function	Data Type
S	Source soft element address	16 bits/32 bits/64 bits,BIN
D	Target soft element address	32 bits/64 bits,BIN

	Operand		System									Мо	dule
Word		D*	FD	ED	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•								•		
	D	•											


*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

<16 bits>

<32 bits >

<64 bits>

- Convert BIN integer to binary floating point. As the constant K, H will auto convert by the floating operation instruction, so this FLT instruction can't be used.
- The inverse transformation instruction is INT.
- FLTD can change the 64 bits integer to 32 bits floating value.

D0 is integer 20, after executing the instruction, D10 is floating value 20.

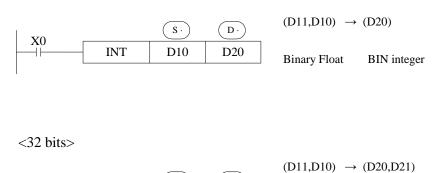
4-8-3. Float point converts to integer [INT]

1. Summary

Floating point	Floating point converts to integer [INT]											
16 bits	INT	32 bits	DINT									
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3									
Hardware requirement	-	Software requirement	-									

2. Operands

Operands	Function	Data Type
S	Source soft element address	16 bits/32 bits, BIN
D	Target soft element address	16 bits/32 bits, BIN


3. Suitable soft components

Word	Operand				Constant	Mo	dule					
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•									
	D	•										

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS; the word combined by bits.

Description

<16 bits>

(D ·

- The binary source number is converted into a BIN integer and stored at the destination device. Abandon the value behind the decimal point.
- The inverse instruction is FLT.
- When the result is 0, the flag bit is ON.
- When converting, less than 1 and abandon it, zero flag is ON.
- The result is over below data, the carry flag is ON.

16 bits operation: -32,768~32,767

32 bits operation: -2,147,483,648~2,147,483,647

For example, if D0 is floating value 130.2, after executing INT, D10 value is integer 130.

4-8-4. BCD convert to binary [BIN]

1. Summary

BCD convert to	binary [BIN]		
16 bits	BIN	32 bits	-
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S	Source soft element address	BCD
D	Target soft element address	16 bits/32 bits, BIN

3. Suitable soft components

1371	Operand				Constant	Mo	dule					
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•			
	D	•		•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

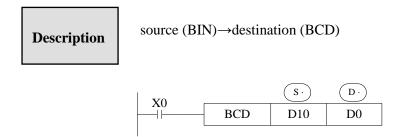
Description

Source (BCD) \rightarrow destination (BIN)

- ➤ If source data is not BCD code, SM409 will be ON (Operation error), SD409=4 (error occurs).
- As constant K automatically converts to binary, so it's not suitable for this instruction.

4-8-5. Binary convert to BCD [BCD]

1. Summary


Convert binary data to BCD code

Binary convert	to BCD [BCD]		
16 bits	BCD	32 bits	-
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

Operands	Function	Data Type
S	Source soft element address	16 bits, BIN
D	Target soft element address	BCD code

	Operand		System								Мо	dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•			
	D	•		•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

> This instruction can change the binary value to BCD code.

4-8-6. Hex converts to ASCII [ASCI]

1. Summary

Hex. convert t	o ASCII [ASCI]		
16 bits	ASCI	32 bits	-
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

Operands	Function	Data Type
S	Source soft element address	2 bits, HEX

D	Target soft element address	ASCII code
n	Transform character quantity	16 bits, BIN

	Operand			Constant	Мо	dule						
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•			
	D	•		•	•		•	•	•			
	n	•		•	•		•	•	•	•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

- \bullet Transform the source Hex data to ASCII code, and store in $\boxed{D\cdot}$. The transformation chacters are n.
- D. Will store one ASCII code.

The convert process is this

Assign start device:	[0]=30H	[1]=31H
(D100)=0ABCH	[5]=35H	[A]=41H
(D101)=1234H	[2]=32H	[6]=36H
(D102)=5678H	[B]=42H	[3]=33H
	[7]=37H	[C]=43H
	[4]=34H	[8]=38H

D	K1	K2	К3	K4	K5	K6	K7	K8	K9
D200 down	[C]	[B]	[A]	[0]	[4]	[3]	[2]	[1]	[8]
D200 up		[C]	[B]	[A]	[0]	[4]	[3]	[2]	[1]
D201 down			[C]	[B]	[A]	[0]	[4]	[3]	[2]
D201 up				[C]	[B]	[A]	[0]	[4]	[3]
D202 down					[C]	[B]	[A]	[0]	[4]
D202 up						[C]	[B]	[A]	[0]
D203 down							[C]	[B]	[A]
D203 up								[C]	[B]
D204 down								•	[C]

4-8-7. ASCII convert to Hex.[HEX]


1. Summary

ASCII converts to Hex. [HEX]									
16 bits	HEX	32 bits	-						
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3						
Hardware requirement	-	Software requirement	-						

0	Function	Date type
Operands		
S	Source soft element address	ASCII
D	Target soft element address	2 bits, HEX
n	ASCII Character quantity	16 bits, BIN

Word	Operand				Constant	Мо	dule					
		D*	D* FD TD* CD* DX DY DM* DS* F							K/H	ID	QD
	S	•	•	•	•	•	•	•	•			
	D	•		•	•		•	•	•			
	n									•		

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Convert the high 8 bits and low 8 bits in source \bigcirc S \bigcirc to HEX data. Move 4 bits every time to destination \bigcirc D \bigcirc . The convert character number is assigned by n.

The convert process is the following:

(S ·)	ASCII	HEX
	Code	Convert
D200 down	30H	0
D200 up	41H	A
D201 down	42H	В
D201 up	43H	С
D202 down	31H	1
D202 up	32H	2
D203 down	33H	3
D203 up	34H	4
D204 down	35H	5

n (D)	D102	D101	D100
1			··0H
2	Not char	nge to be	·0AH
3		0	0ABH
4			0ABC
			Н
5		··0H	ABC1
			Н
6		·0AH	BC12H
7		0ABH	C123H
8		0ABC	1234H
		Н	
9	·· 0H	ABC1H	2345H

n=k4

D200	0	1	0	0	0	0	0	1	0	0	1	1	0	0	0	0
			4	1H?	[A]						;	30H	? [0]		
D201	0	1	0	0	0	0	1	1	0	1	0	1	0	0	1	0
			4:	3H?	[C]							12H	? [B]		
D100	0	0	0	0	1	0	1	0	1	0	1	1	1	1	0	0
		()			1	4			E	3			()	

4-8-8. Coding [DECO]

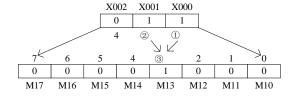
1. Summary

Change any data or bit to 1.

Coding [DECO]		
16 bits	DECO	32 bits	-
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

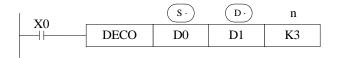
Operands	Function	Data Type
S	The source data address	16 bits, BIN
D	The decode result head address	16 bits, BIN
n	The decoding soft element bit quantity	16 bits, BIN

Operand				S	ysten	n				Constant	Mo	dule		
	D*	FD	TD*	CD*	D	X	DY	DM*	DS*	K/H	ID	QD		
S	•	•	•	•	•		•	•	•					
n										•				
Operan	d			Syste	em									
	X	Y	M*	S*	T*	C*	Dn	ım						
D	•	•	•	•	•	•								
	S n Operan	D° S n Operand 2	D° FD S n Operand X Y	D° FD TD° S	D° FD TD° CD° S	D* FD TD* CD* D2 S	D° FD TD° CD° DX S	D* FD TD* CD* DX DY S	D* FD TD* CD* DX DY DM*	D* FD TD* CD* DX DY DM* DS* S	D* FD TD* CD* DX DY DM* DS* K/H S	D* FD TD* CD* DX DY DM* DS* K/H ID	D* FD TD* CD* DX DY DM* DS* K/H ID QD S	D* FD TD* CD* DX DY DM* DS* K/H ID QD S


*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S, HS; T includes T and HT; C includes C and HC.

Description


< When \bigcirc is bit unit > n \le 16

- The source address is 1+2=3, so starts from M10; the third bit (M13) is 1. If the source is all 0, M10 is 1.
- When n=0, no operation, beyond n=0 \sim 16, don't execute the instruction.
- When n=16, if decoding command (D) is soft unit, it's point is 2^{16} =65536.
- When drive input is OFF, instructions are not executed, the decoding output keep on the state.

< When \bigcirc is word device > n \le 4

- Low n bits $(n \le 4)$ of source address are decoded to target address. $n \le 3$, the high bit of target address all become 0.
- When n=0, no operation, beyond $n=0\sim14$, don't execute the instruction.

4-8-9. High bit coding [ENCO]

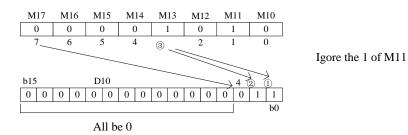
1. Summary

Find the highest bit which is 1.

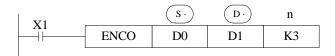
High bit coding [ENCO]								
16 bits	ENCO	32 bits	-					
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3					
Hardware requirement	-	Software requirement	-					

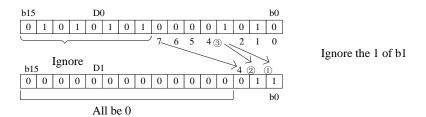
Operands	Function	Data Type
S	Coding data address	16 bits, BIN
D	Coding result address	16 bits, BIN
n	The bit quantity of coding result	16 bits, BIN

Word	Operand		System Constant M									
		\mathbf{D}^*	FD	TD^*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•			
	D	•		•	•		•	•	•			
	n									•		
	Operand				Systo	em			1		1	
Bit		X	Y	M*	S*	T *	C*	Dn.m				
	S	•	•	•	•	•	•					


*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S, HS; T includes T and HT; C includes C and HC.


Description


< When (s) is bit device $> n \le 16$

< When (s) is word device > $n \le 4$

- If many bits in the source address are 1, ignore the low bits. If source addresses are all 0, don't execute the instructions.
- When drive input is OFF, the instruction is not executed, encode output don't change.
- When n=16, if encode instruction (s) is bit unit, it's point number is 2^{16} =65536.

4-8-10. Low bit coding [ENCOL]

1. Summary

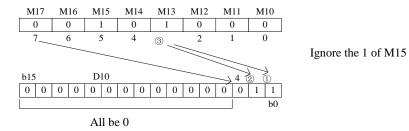
Find the lowest bit which is 1.

Low bit coding	[ENCOL]		
16 bits	ENCOL	32 bits	-
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

Operands	Function	Data Type
S	Soft element address need coding	16bit,BIN

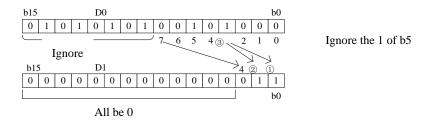
D	Soft element address to save coding result	16bit,BIN
n	The bit quantity of coding result	16bit,BIN

Vord	Operand	perand System									Constant	Mod	lule
		\mathbf{D}^*	FD	TD*	CD*	DX	D'	Y	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•		•	•			
	D	•		•	•		•		•	•			
	n										•		
	Operand				Syste	m							
Bit		X	Y	M*	S*	T*	C*	Dn.ı	m				
	S	•	•	•	•	•	•						


*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S, HS; T includes T and HT; C includes C and HC.

Description


<if s· is bit device $> n \le 16$

< if s· is word device> $n \le 4$

- If many bits in the source address are 1, ignore the high bits. If source address are all 0, don't execute the instructions.
- When drive input is OFF, the instruction is not executed, encode output don't change
- When n=16, if encode instruction (s) is bit unit, it's point number is 2^{16} =65536.

4-8-11. Binary to Gray code [GRY]

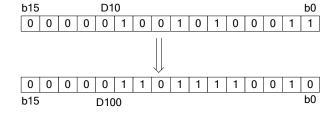
1. Summary

Transform the binary data to gray code.

Binary to gray [GRY]								
16 bits	GRY	32 bits	DGRY					
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3					
Hardware requirement	-	Software requirement	-					

Operands	Function	Data Type

S	Soft element address need coding	16bits/32bits, BIN
D	Soft element address to save coding result	16bits/32bits, BIN


	Operand				Sy	stem				Constant	Мо	dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•	•		
	D	•		•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Source (BIN) \rightarrow target (GRY)

Each bit of D10 will XOR with the bit on its left side. As the related gray code, the left bit will not change (the left bit is 0); the transformation result is stored in D100.

- Transform the binary value to gray code.
- GRY has 32 bits mode DGRY, which can transform 32 bits gray code.
- (s·) Range is 0~32,767 (16 bits instruction); 0~2,147,483,647 (32 bits instruction).

4-8-12. Gray code to binary [GBIN]

1. Summary

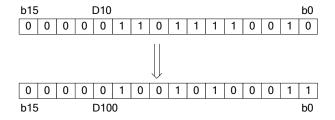
Transform the gray code to binary data.

Gray code to bin	ary [GBIN]		
16 bits	GBIN	32 bits	DGBIN
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S	Soft element address need coding	16bits/32bits, BIN
D	Soft element address to save coding result	16bits/32bits, BIN

3. Suitable soft components


	Operand				Sy	stem				Constant	Mo	dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•	•		
	D	•		•	•		•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Source $(GRY) \rightarrow target (BIN)$

From the left second bit of D10, XOR each bit with the value after decoding, as the bit value after decoding (the left bit will not change). The transformation value will be stored in D100.

- Transform the gray code to binary value.
- GBIN has 32 bits mode DBIN, which can transform 32 bits binary value.
- (s) Range is 0~32,767 (16 bits instruction); 0~2,147,483,647 (32 bits instruction).

4-9. Floating number Operation

Mnemonic	Function	Chapter
ECMP	Floating Compare	4-9-1
EZCP	Floating Zone Compare	4-9-2
EADD	Floating Add	4-9-3
ESUB	Floating Subtract	4-9-4
EMUL	Floating Multiplication	4-9-5
EDIV	Floating Division	4-9-6
ESQR	Floating Square Root	4-9-7
SIN	Sine	4-9-8
COS	Cosine	4-9-9
TAN	Tangent	4-9-10
ASIN	ASIN	4-9-11
ACOS	ACOS	4-9-12
ATAN	ATAN	4-9-13

4-9-1. Floating Compare [ECMP]

1. Summary

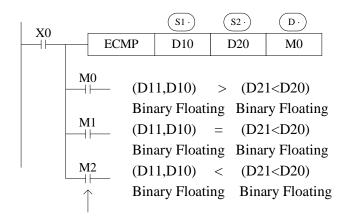
Floating Comp	are [ECMP]		
16 bits	-	32 bits	ECMP
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S1	Soft element address need compare	32 bits, BIN
S2	Soft element address need compare	32 bits, BIN
D	Compare result	bit

3. Suitable soft components

Word	Operand				Sy	stem				Constant	Мо	dule	
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	S1	•	•			•	•	•	•	•			
	S2	•	•			•	•	•	•	•			
	Operand			S	ystem]					
Bit		X	Y	M*	S* T*	C*	Dn.m	_					
Bit	D		•	•	•								
	D		•	<u>•</u>	•								


 $*Notes: D\ includes\ D,\ HD;\ TD\ includes\ TD,\ HTD;\ CD\ includes\ CD,\ HCD,\ HSCD,\ HSD;$

DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S and HS; C includes C and HC.

Description

 $(D11, D10) : (D21, D20) \rightarrow M0,M1,M2$

When X0 is OFF, even ECMP doesn't run, M0~M2 will keep the status before X0 is OFF.

- ➤ The instruction will compare the two source data S1 and S2. The result is stored in three bits from D.
- ➤ If a constant K or H used as source data, the value is converted to floating value.

(K500): $(D101, D100) \rightarrow M10, M11, M12$

Binary converts Binary floating

to floating

4-9-2. Floating Zone Compare [EZCP]

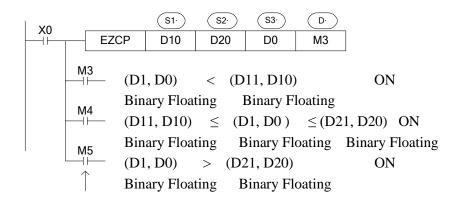
1. Summary

Floating Zone	Compare [EZCP]		
16 bits	-	32 bits	EZCP
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S1	Soft element address need compare	32 bits, BIN
S2	Upper limit of compare data	32 bits, BIN
S3	Lower limit of compare data	32 bits, BIN
D	The compare result soft element address	bit

3. Suitable soft components


Word	Operand				Constant	Module							
,, 010		D*	FD	TD	* (CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•				•	•	•	•	•		
	S2	•	•				•	•	•	•	•		
	S3	•	•				•	•	•	•	•		
Bit	Operand		I .	S	Syst	em		I				l	
		X	Y	M*	S*	T*	C*	Dn.m					
	D		•	•	•								

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S and HS; C includes C and HC.

Compare the source data with the range

When X0 is OFF, even EZCP doesn't run, M3~M5 will keep the status before X0 is OFF.

Compare the source data S3 to the upper and lower limit value of the range S1~S2. The result will store in three coils starting from D.

Constant K and H will transform to binary floating value when they are source data.

 $(K10): [D6,D5]: (K2800) \rightarrow M0, M1, M2$

Binary converts Binary Floating Binary converts

to Floating to Floating

Please set $S1 \le S2$, when S2 < S1, make S2 as the same value to S1.

4-9-3. Floating Add [EADD]

1. Summary

Floating Add [E	EADD]		
16 bits	-	32 bits	EADD
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S1	Addition operation data address	32 bits, BIN
S2	Addition operation data address	32 bits, BIN
D	Result address	32 bits, BIN

3. Suitable soft components

Word	Operand				Sy	stem	Constant	Mo	dule				
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	S1	•	•			•	•	•	•	•			
	S2	•	•			•	•	•	•	•			
	D	•					•	•	•				

$$(D11, D10) + (D21, D20) \rightarrow (D51, D50)$$

Binary Floating Binary Floating Binary Floating

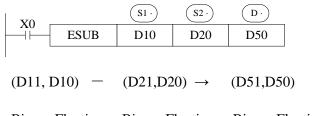
- The two binary floating source data do addition operation, the result will be stored in target address.
- If a constant K or H used as source data, the value is converted to floating point before the addition operation.

Binary converts to Floating Binary Floating Binary Floating

• The source data and result address can be the same. Please note that when X0 is ON, the instruction will be executed in every scanning period.

4-9-4. Float Sub [ESUB]

1. Summary


Floating Sub [ESUB]		
16 bits	-	32 bits	ESUB
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S1	Subtraction operation data address	32 bits, BIN
S2	Subtraction operation data address	32 bits, BIN
D	Result address	32 bits, BIN

3. Suitable soft components

Word	Operand				Sy	stem				Constant	Мо	dule
,, 014		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•			•	•	•	•	•		
	S2	•	•			•	•	•	•	•		
	D	•					•	•	•			

Binary Floating Binary Floating Binary Floating

- The binary floating value S1 subtract S2, the result is stored in the target address.
- If a constant K or H used as source data, the value is converted to floating point before the subtraction operation.

$$X1$$
 ESUB K1234 D100 D110 $(K1234)$ - $(D101, D100)$ \rightarrow $(D111, D110)$

Binary converts to Floating Binary Floating Binary Floating

• The source data and result address can be the same. Please note that when X0 is ON, the instruction will be executed in every scanning period.

4-9-5. Float Mul [EMUL]

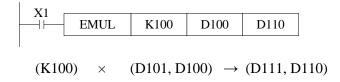
1. Summary

Floating Multiply	[EMUL]		
16 bits	-	32 bits	EMUL
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S1	Multiplication operation data address	32 bits, BIN
S2	Multiplication operation data address	32 bits, BIN
D	Result address	32 bits, BIN

3. Suitable soft components


Word	Operand				Sy	stem				Constant	Mo	dule
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•			•	•	•	•	•		
	S2	•	•			•	•	•	•	•		
	D	•					•	•	•			

$$(D11, D10) \times (D21, D20) \rightarrow (D51, D50)$$

Binary Floating Binary Floating

- The floating value of S1 is multiplied with the floating value point value of S2. The result of the multiplication is stored at D as a floating value.
- If a constant K or H used as source data, the value is converted to floating point before the multiplication operation.

Binary converts to Floating Binary Floating Binary Floating

4-9-6. Float Div [EDIV]

1. Summary

Floating Divide	[EDIV]		
16 bits	-	32 bits	EDIV
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S1	Division operation data address	32 bits, BIN
S2	Division operation data address	32 bits, BIN
D	Result address	32 bits, BIN

3. Suitable soft components

Word	Operand				Sy	stem		Constant	Mo	dule			
		D*	FD	TD^*	CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	S1	•	•			•	•	•	•	•			
	S2	•	•			•	•	•	•	•			
	D	•					•	•	•				

$$(D11, D10) \div (D21, D20) \rightarrow (D51, D50)$$

Binary Floating Binary Floating

- The floating point value of S1 is divided by the floating point value of S2. The result of the division is stored in D as a floating point value.
- If a constant K or H used as source data, the value is converted to floating point before the division operation.

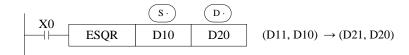
Binary converts to Floating Binary Floating Binary Floating

• The source data S2 is 0, the calculation will be error. The instruction will not work.

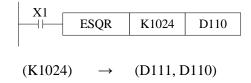
4-9-7. Float Square Root [ESQR]

1. Summary

Floating Squar	e Root [ESQR]		
16 bits	-	32 bits	ESQR
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-


2. Operands

Operands	Function	Data Type
S	The soft element address need to do square root	32 bits, BIN
D	The result address	32 bits, BIN


3. Suitable soft components

Word	Operand	Operand System Constant										dule
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•			•	•	•	•	•		
	D	•					•	•	•			

^{*}Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

- A square root is performed on the floating point value S; the result is stored in D
- If a constant K or H used as source data, the value is converted to floating point before the operation.

Binary converts to Floating Binary Floating

- When the result is zero, zero flag activates.
- Only when the source data is positive will the operation be effective. If S is negative then an error occurs and error flag SM409 is set ON, SD409=7, the instruction can't be executed.

4-9-8. Sine [SIN]

1. Summary

Floating Sine[S	SIN]		
16 bits	-	32 bits	SIN
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

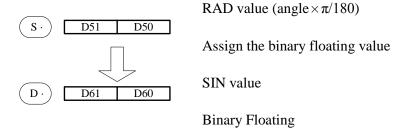
2. Operands

Operands	Function	Data Type
S	The soft element address need to do sine	32 bits, BIN
D	The result address	32 bits, BIN

3. Suitable soft components

Word	Operand				Sy	stem				Constant	Мо	dule
		D*	FD	TD^*	CD^*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•			•	•	•	•	•		
	D	•					•	•	•			

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.


Description

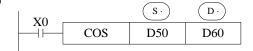
 $(D51, D50) \rightarrow (D61, D60)$ SIN

Binary Floating Binary Floating

• This instruction performs the mathematical SIN operation on the floating point value in S (angle RAD). The result is stored in D.

4-9-9. Cosine [SIN]

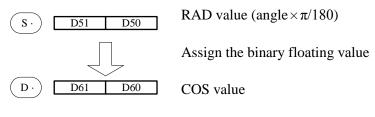
1. Summary


Floating Cosine	[COS]		
16 bits	-	32 bits	COS
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-

2. Operands

Operands	Function	Data Type
S	Soft element address need to do cos	32 bits, BIN
D	Result address	32 bits, BIN

3. Suitable soft components


	Operand				Sy	stem				Constant	Mo	dule	
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	К/Н	ID	QD	
	S	•	•			•	•	•	•	•			
	D	•					•	•	•				

 $(D51,D50) RAD \rightarrow (D61,D60) COS$

Binary Floating Binary Floating

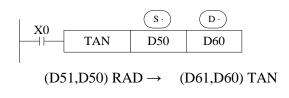
> This instruction performs the mathematical COS operation on the floating point value in S (angle RAD). The result is stored in D.

Binary Floating

4-9-10. TAN [TAN]

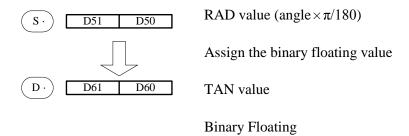
1. Summary

TAN [TAN]			
16 bits	-	32 bits	TAN
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement	-	Software requirement	-


2. Operands

Operands	Function	Data Type
S	Soft element address need to do tan	32bit,BIN
D	Result address	32bit,BIN

3. Suitable soft components


Word	Operand				Sy	stem				Constant	Мо	dule
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•			•	•	•	•	•		
	D	•					•	•	•			

^{*}Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Binary Floating Binary Floating

• This instruction performs the mathematical TAN operation on the floating point value in S. The result is stored in D.

4-9-11. ASIN [ASIN]

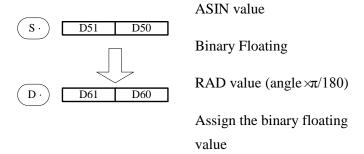
1. Summary

ASIN [ASIN]			
16 bits	-	32 bits	ASIN
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3
Hardware requirement		Software requirement	-

2. Operands

Operands	Function	Data Type
S	Soft element address need to do arcsin	32 bits, BIN
D	Result address	32 bits, BIN

3. Suitable soft components


	Operand		System Cons									dule
Word		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•			•	•	•	•	•		
	D	•					•	•	•			

(D51, D50) ASIN \rightarrow (D61, D60) RAD

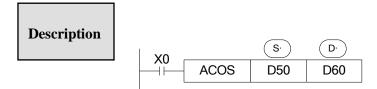
Binary Floating Binary Floating

• This instruction performs the mathematical ASIN operation on the floating point value in S. The result is stored in D.

4-9-12. ACOS [ACOS]

1. Summary

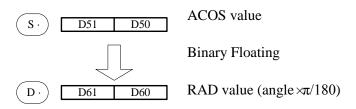
ACOS [ACOS]							
16 bits	-	32 bits	ACOS				
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3				
Hardware requirement		Software requirement	-				


2. Operands

Operands	Function	Data Type
S	Soft element address need to do arccos	32 bits, BIN
D	Result address	32 bits, BIN
		ŕ

3. Suitable soft components

Word	Operand		System Constant Module									
., 52.5		D*	D* FD TD* CD* DX DY DM* DS*							К/Н	ID	QD
	S	•	•			•	•	•	•	•		
	D	•					•	•	•			


*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

 $(D51,D50) ACOS \rightarrow (D61,D60) RAD$

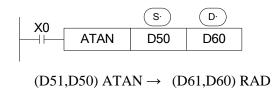
Binary Floating Binary Floating

• Calculate the arcos value(radian), save the result in the target address

Assign the binary floating value

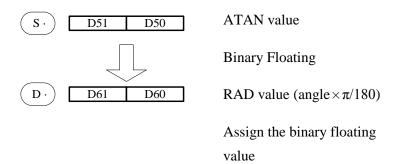
4-9-13. ATAN [ATAN]

1. Summary


ATAN [ATAN]								
16 bits	-	32 bits	ACOS					
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3					
Hardware requirement		Software requirement	-					

2. Operands

Operands	Function	Data Type
S	Soft element address need to do arctan	32 bit, BIN
D	Result address	32 bit, BIN


3. Suitable soft components

Word	Operand		System							Constant	Mo	dule
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•			•	•	•	•	•		
	D	•					•	•	•			

Binary Floating Binary Floating

• Calculate the arctan value (radian), save the result in the target address

4-10. RTC Instructions

Mnemonic	Function	Chapter
TRD	Clock data read	4-10-1
TWR	Clock data write	4-10-2

※1: To use the instructions, The Model should be equipped with RTC function;

4-10-1. Read the clock data [TRD]

1. Instruction Summary

Read the clock data:

Read the clock data: [TRD]							
16 bits	TRD	32 bits	-				
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3				
Hardware requirement		Software requirement	-				

2. Operands

Operands	Function	Data Type
D	Register address to save clock data	16 bits, BIN

3. Suitable Soft Components

(Operand				Sy	stem				Constant	Мо	dule
Word	-	D*	FD	TD^*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
I	D	•		•	•							

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

The current time and date of the real time clock are read and stored in the 7 data devices specified by the head address D.

Item
Year
Month
Date
Hour
Minute
Second
Week

• Read PLC's real time clock according to the following format. Read the special data register (SD013~SD019).

	Unit	Item	Clock data		Unit
Sp	SD018	Year	0-99	→	D0
Special	SD017	Month	1-12	→	D1
_	SD016	Date	1-31	→	D2
data register time clock t	SD015	Hour	0-23	→	D3
	SD014	Minute	0-59	→	D4
for real	SD013	Second	0-59	→	D5
eal	SD019	Week	0 (Sun.)-6 (Sat.)	→	D6

- The RTC (real time clock) value is in BCD code format (SD013 to SD019). Please choose hex format to monitor the RTC value in XDPpro software. The value can be transformed to decimal format by BIN instruction. After reading the RTC by TRD instruction, the value will show in decimal format.
- After reading the RTC by TRD, the value becomes decimal value.
- after executing TRD instruction, D0 to D6 are occupied.

4-10-2. Write Clock Data [TWR]

1. Instruction Summary

Write the clock data:


Write clock data [TWR]										
16 bits	-	32 bits	TWR							
Execution condition	Normally ON/OFF, rising/falling edge	Suitable Models	XD3							
Hardware requirement		Software requirement	-							

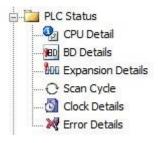
2. Operands

Operands	Function	Data Type
S	Write the clock data to the register	16 bits, BIN

3. Suitable Soft Components

Word	Operand				\$	System				Constant	Mod	lule
		D*	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									QD
	D	•		•	•	•	•	•	•			

Write the RTC value to the PLC.


- Write the set clock data into PLC's real time clock.
- In order to write real time clock, please set the 7 registers value from D0 to D6.

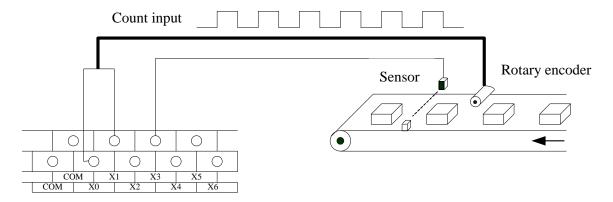
	Unit	Item	Clock data		Unit	Item	
	D0	Year	0-99	→	SD018	Year	Sp
Data	D1	Month	1-12		SD017	Month	Special
for	D2	Date	1-31	→	SD016	Date	l data time
clock	D3	Hour	0-23	→	SD015	Hour	a registe e clock
k set	D4	Minute	0-59	→	SD014	Minute	register clock t
setting	D5	Second	0-59		SD013	Second	for real
	D6	Week	0 (Sun.)-6 (Sat.)] →	SD019	Week	eal

After executing TWR instruction, the time in real time clock will immediately change to be the new time. It is a good idea to set the time few minutes late as the current time, and then drive the instruction when the real time reaches this value.

Note: when choosing secret download program advance mode in XDPpro software, the RTC only can be changed through TWR instruction.

There is another method to write the RTC. In the XDPpro software, please click the clock details in project bar on the left. Then click write into the current time.the PC will auto-write the current time to the PLC.

5 HIGH SPEED COUNTER (HSC)

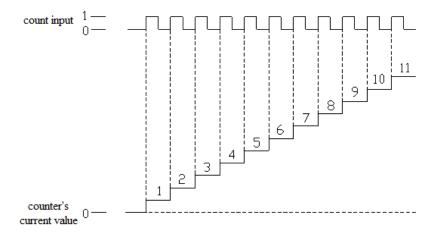

This chapter will introduce high speed counter's functions, including high speed count model, wiring method, read/write HSC value, reset etc.

Instructions List for HSC

Instruction name	Function	Instruction	Chapter
HSC read/w	rite		
DMOV	HSC read	DMOV HSCO DO	5-6-1
DMOV	HSC write	DMOV D4000 HSC0	5-6-2
CNT	No 24-segments single phase	CNT HSCO K1000	5-7-1
CNT_AB	No 24-segments AB phase	CNT_AB HSCO K1000	5-7-2
CNT	24-segments single phase	CNT HSCO K1000 DO	5-7-3
CNT_AB	24-segments AB phase	CNT_AB HSCO K1000 DO	5-7-4
RST	HSC reset	RST HSCO	5-8

5-1. Functions Summary

XD3 series PLC has HSC (High Speed Counter) function which will not affect by the scanning cycle. Via choosing different counter, test the high speed input signals with detect sensors and rotary encoders. The highest testing frequency can reach 80 KHz.

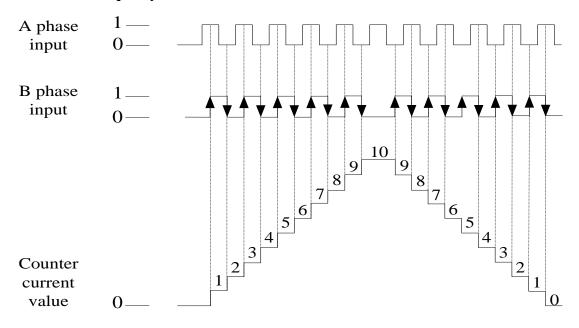


5-2. HSC Mode

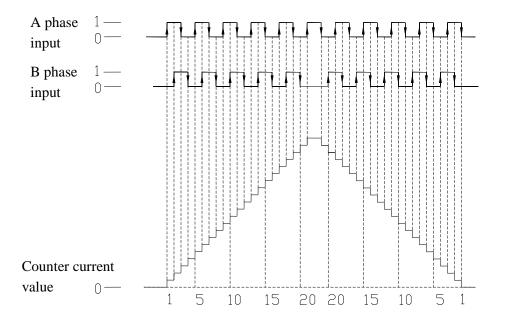
XD3 series high speed counter has two working mode: increasing mode and AB phase mode.

Increasing Mode

Under this mode, the count value increase at each pulse's rising edge;



AB Phase Mode

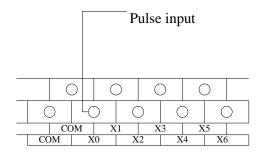

Under this mode, the HSC value increase or decrease according to two differential signal (A phase and B phase). According to the multiplication, we have 1-time frequency and 4-time frequency, but the default count mode is 4-time mode.

1-time frequency and 4-time frequency modes are shown below:

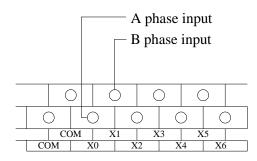
> 1-time Frequency

▶ 4-time Frequency

5-3. HSC Range


HSC's count range is: $-2,147,483,648 \sim +2,147,483,647$. If the count value overflows this range, then overflow or underflow appears;

Overflow means the count value jumps from +2,147,483,647 to -2,147,483,648, then continue counting; underflow means the count value jumps from -2,147,483,648 to +2,147,483,647 then continue counting.


5-4. HSC Input Wiring

For the counter's pulse input wiring, things differ with different PLC model and counter model; several typical input wiring diagrams are shown below: (take XD3-60 HSC0 as the example):

Increasing mode (counter HSC0)

AB phase mode (counter HSC0)

5-5. HSC ports assignment

Each letter's Meaning:

U	A	В	Z
Pulse input	A phase input	B phase input	Z phase pulse catching

Normally, X0 and X1 can accept 80 KHz and 50 KHz pulse in single phase mode and AB phase mode. Other terminals can accept 10 KHz and 5 KHz pulse in single phase mode and AB phase mode. X can use as normal input terminals when there are no high speed pulses input. In the following table, Frequency time 2 means 2-time frequency; 4 means 4-time frequency; 2/4 means 2-time and 4-time frequency.

	XD3-16T/R/RT-E											
			Incr	easing n	node	AB phase mode						
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HSC8
Max frequency	80K	10K						80K	10K			
Frequency time								2/4	2/4			
Counter interruption	√	√						V	V			
X000	U							A				
X001								В				
X002								Z				
X003			U						A			
X004									В			
X005									Z			
X006												
X007												
X010												
X011												

	XD3-32/60/T/R/RT-E											
			Incre	asing m	ode	AB phase mode						
	HSC0	HSC2	HSC4	HSC6	HSC8	HSC10	HSC12	HSC0	HSC2	HSC4	HSC6	HSC8
Max frequency	80K	10K	10K					80K	10K	10K		
Frequency time								2/4	2/4	2/4		
Counter interruption	V	√	1					V	√	V		
X000	U							A				
X001								В				
X002								Z				
X003		U							A			

X004					В		
X005					Z		
X006		U				A	
X007						В	
X010						Z	
X011							

5-6. Read/Write HSC value

All high speed counters support read instruction [DMOV] and write instruction [DMOV].

5-6-1. Read HSC value [DMOV]

1. Instruction Summary

Read HSC value to the specified register;

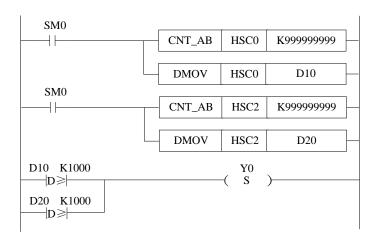
Read HSC value [DMOV]										
16 bits Instruction	-	32 bits Instruction	DMOV							
Execution condition	Normally ON/OFF, rising/falling edge	Suitable models	XD3							
Hardware requirement		Software requirement	-							

2. Operands

Operands	Function	Туре
S	Specify HSC code	32 bits, BIN
D	Specify the read/written register	32 bits, BIN

3. Suitable Soft Components

word	Operand				Sys	stem				Constant	Mo	dule
		D*	FD	TD*	CD*	DX	DY	DM	DS*	K/H	ID	QD
	S					•						
	D	•										


*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

FUNCTIONS AND ACTIONS

- Move the counting value of HSC (dword) to the target register when the condition activates.
- DMOV will send the counting value to data register; this will improve the counting value precision.

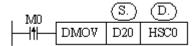
Program example:

5-6-2. Write HSC value [DMOV]

1. Instruction Summary

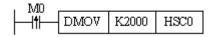
Write the specified register value into HSC;

Write HSC valu	e [DMOV]		
16 bits	-	32 bits	DMOV
Instruction		Instruction	
Execution	Normally ON/OFF,	Suitable models	XD3
condition	rising/falling edge		
Hardware		Software	-
requirement		requirement	


2. operands

Operands	Function	Туре
S	Specify HSC code	32 bits, BIN
D	Specify the read/written register	32 bits, BIN

3. suitable soft components


word	Operand				Sy	stem				Constant	Мо	dule
		D*	FD	TD*	CD*	DX	DY	DM	DS*	K/H	ID	QD
	S					•						
	D	•										

FUNCTIONS AND ACTIONS

- Move the data register value to HSC when the condition activates.
- The HSC cannot join all the instructions except DMOV. Please use DMOV to send the HSC value to normal register then it can join other instructions.

Program example:

5-7. HSC Reset Mode

5-7-1. HSC no 100-segment single phase [CNT]

1. Summarization

HSC no 100-segment single phase counting instruction.

HSC no 100-segment	single phase [CNT]		
16-bit instruction	-	32-bit instruction	CNT
Execution condition	Normal ON/OFF	Suitable model	XD3
Hardware requirements	-	Software requirements	-

2. Operand

Operand	Function	Туре
S1	Set the HSC (for example: HSC0)	32 bits, BIN
S2	Set the compare value (K100, D0)	32 bits, BIN

3. Suitable soft components

D* FD TD* CD* DX DY DM DS* K/H ID QD S1 Only can be HSC	Word	Operand				Sys	stem				Constant	Мо	dule
			D*	FD	TD^*	CD*	DX	DY	DM	DS*	K/H	ID	QD
S2 • •		S1	Onl	aly can be HSC									
		S2	•										

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

Description

• When HSC0 is counting, compare HSC counting value to D20, if they are equal, set on coil HSC0.

Program example:

5-7-2. HSC no 100-segment AB phase [CNT_AB]

1. Summarization

HSC no 100-segment AB phase counting instruction.

HSC no 100-segment	AB phase [CNT_AB]		
16 bits instruction	-	32 bits instruction	CNT_AB
Execution condition	Normal ON/OFF	Suitable model	XD3
Hardware requirements	-	Software requirements	-

2. Operand

Operand	Function	Туре
S1	Set the HSC (such as:HSC0)	32 bits, BIN
S2	Set the compare value (such as: K100, D0)	32 bits, BIN

3. Suitable soft components

D* FD TD* CD* DX DY DM DS* K/H ID QD S1 Only can be HSC	Word	Operand				Sys	stem				Constant	Mo	dule
			D*	FD	TD*	CD*	DX	DY	DM	DS*	K/H	ID	QD
S2 •		S1	Onl	ıly can be HSC									
		S2	•										

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

• When HSC0 is AB phase counting, compare HSC counting value to D20, if they are equal, set on coil HSC0.

Program example:

5-7-3. HSC 100-segment single phase [CNT]

1. Summarization

HSC 100-segment single phase counting instruction.

HSC 100-segment single phase [CNT]							
16 bits instruction	-	32 bits instruction	CNT				
Execution condition	Normal ON/OFF	Suitable model	XD3				
Hardware requirements	-	Software requirements	-				

2. Operand

Operand	Function	Туре
S1	Set the HSC (such as: HSC0)	32 bits, BIN
S2	Set the compare value (such as: K100, D0)	32 bits, BIN
S3	Set the 24-segment value	32 bits, BIN

3. Suitable soft components

	Operand				Sy	stem				Constant	Mo	dule	
word		D*	FD	TD*	CD*	DX	DY	DM	DS*	K/H	ID	QD	
	S1	Onl	nly can be HSC										
	S2	•											
	S3	•											

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

• When HSC0 is single phase counting, compare the HSC value to D4100, if HSC value is equal to 24-segment value, it will produce HSC interruption.

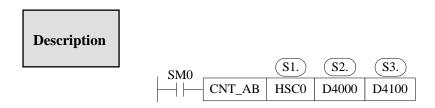
Program example:

5-7-4. HSC 100-segment AB phase [CNT_AB]

1. Summarization

HSC 100-segment AB phase counting instruction.

HSC 100-segment AB phase [CNT_AB]							
16 bits instruction	-	32 bits instruction	CNT_AB				
Execution condition	Normal ON/OFF	Suitable model	XD3				
Hardware requirments	-	Software requirements	-				

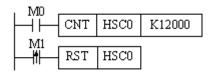

2. Operand

Operand	Function	Туре
S1	Set the HSC (such as: HSC0)	32 bits, BIN
S2	Set the compare value (such as: K100, D0)	32 bits, BIN
S3	Set the 24-segment value	32 bits, BIN

3. Suitable soft components

Word	Operand		System Constant Module									
		D*	FD	TD*	CD*	DX	DY	DM	DS*	K/H	ID	QD
	S1	Onl	nly can be HSC									
	S2	•										
	S3	•										

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.



• When HSC0 is AB phase counting, compare the HSC value to D4100, if HSC value is equal to 24-segment value, it will produce HSC interruption.

Program example:

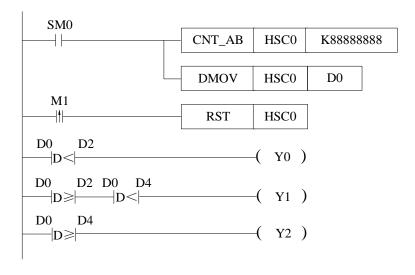
5-8. AB Phase counter multiplication setting

HSC is software reset mode.

When M0 is ON, HSC0 is counting the pulse from X0 terminal. When M1 changes from OFF to ON, reset the HSC0, the counting value will be cleared.

5-9. AB Phase mode frequency time setting

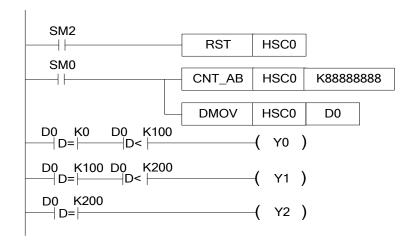
The frequency time can be set through special FLASH register for AB phase mode counting.


FLASH register	Function	Set value	Meaning
SFD320	HSC0 frequency times	2	2-time frequency
	1 ,	4	4-time frequency
SFD321	HSC2 frequency times	2	2-time frequency
	1 ,	4	4-time frequency
SFD322	HSC4 frequency times	2	2-time frequency
		4	4-time frequency
SFD323	HSC6 frequency times	2	2-time frequency
	1 ,	4	4-time frequency
SFD324	HSC8 frequency times	2	2-time frequency
	1 ,	4	4-time frequency
SFD325	HSC10 frequency times	2	2-time frequency
	, ,	4	4-time frequency
SFD326	HSC12 frequency times	2	2-time frequency
	, ,	4	4-time frequency
SFD327	HSC14 frequency times	2	2-time frequency
	, ,	4	4-time frequency
SFD328	HSC16 frequency times	2	2-time frequency
		4	4-time frequency
SFD329	HSC18 frequency times	2	2-time frequency
	1	4	4-time frequency

5-10. HSC Example

We make XD3-60 PLC as an example to introduce HSC programming method.

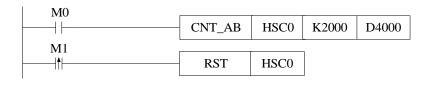
Increasing mode:


- When M0 is ON, HSC0 counts the pulses of X0.
- When the rising edge of M1 is coming, reset HSC0.

- When SM0 is ON, set the count value of HSC to K88888888, read the HSC0 counting value to register D0 (dword).
- When HSC0 counting vaue is less than D2 (D0<D2), Y0 is ON; when HSC0 counting value is in the range of D2 to D4 (D2 \leq D0 <D4), Y1 is ON; when HSC0 counting value is larger than D4 (D0 \geq D4), Y2 is ON.
- When the rising edge of M1 is coming, reset HSC0.

AB phase mode:

- When M8 is ON, HSC0 starts counting. The pulse input from X0 (A phase) and X1 (B phase).
- If the counting value is over 3000, Y2 is ON.
- When the rising edge of M9 is coming, reset HSC0.


- When the rising edge of SM2 is coming, reset HSC0 and the counting value is cleared.
- When SM0 is ON, HSC0 starts counting; the set counting value is 88888888.
- If the counting value is in the range of 0 to 100 ($0 \le D0 < 100$), Y0 is ON; if the counting value is in the range of 100 to 200 ($100 \le D0 < 200$), Y1 is ON; if the counting value is larger than 200 ($D0 \ge 200$), Y2 is ON.

5-11. HSC interruption

Some HSC (refer to chapter 5-5) has 100 segments 32-bit preset value. When the HSC difference value is equal to 100-segment preset value, the interruption will be produced.

5-11-1. Interruption instruction

(For the program about interruption, please refer chapter 5-11-4)

LD M0 //HSC activates condition M0 (interruption count condition)

CNT_AB HSC0 K2000 D4000 //HSC value and set the start address of 100-segment


LDP M1 //activate condition of HSC reset

RST HSC0 //HSC and 100-segment reset (interruption reset)

As shown in the above graph, data register D4000 is the start address of 100-segment preset value. The following addresses will save each 100-segment preset value in DWORD form. Please pay attention when using HSC:

- If certain preset value is 0, it means count interruption end at this segment;
- Set the interruption preset value but not write the correspond interruption program is not allowed;
- 100-segment interruption of HSC occurs in order. If the first segment interruption doesn't happen, then the second segment interruption will not happen;
- HSC CAM: after setting the 100-segment preset value, choose the HSC CAM function. When HSC counting value is equal to one of the preset value, the corresponding interruption will be executed. The same HSC CAM can be repeated when HSC counting value changes.
- 100-segment single phase and AB phase, HSC absolute and relative mode (refer to special register SFD330, SFD331), HSC CAM (refer to special register SFD332) can be configured in the following way:

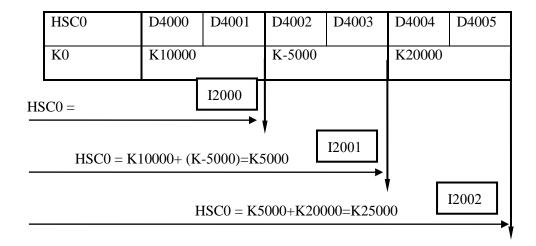
Click the high speed counter config in XDPpro software. And configure the parameters in it.

5-11-2. Interruption flag of HSC

The 100 segments interruption flags of each HSC are in the following table. For example, the 100 segments interruption flags of HSC0 are I2000, I2001, I2002..... I2099.

HSC	Interruption flag
HSC0	I2000~I2099
HSC2	I2100~I2199
HSC4	I2200~I2299
HSC6	I2300~I2399
HSC8	I2400~I2499
HSC10	I2500~I2599

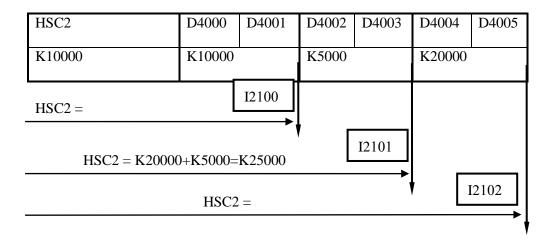
HSC12	I2600~I2699
HSC14	I2700~I2799
HSC16	I2800~I2899
HSC18	I2900~I2999


Define the preset value

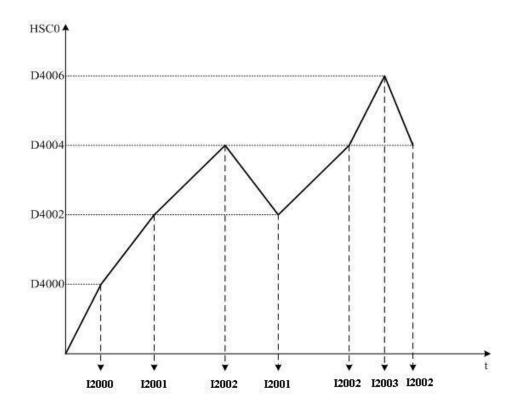
HSC 100-segment preset value is the difference value. When the counting value is equal to the difference of counting value and last preset value, it will produce the interruption. N interruption flags correspond to N interruption preset values. The (N+1) preset value is 0.

Example1:

The current value of HSC0 is 0, segment one preset value is 10000, the preset value in segment 2 is -5000, the preset value in segment 3 is 20000. When start to count, the counter's current value is 10000, it generates the first interruption I2000; the counter's current value is 5000, it generates the second interruption I2001; the counter's current value is 25000, it generates the third interruption I2002.


See graph below:

Example 2:


HSC2 current value is 10000, the segment one preset value is 10000, the preset value in segment 2 is 5000, the preset value in segment 3 is 20000. When start to count, the counter's current value is 20000, it generates the first interruption I2100; the counter's current value is 25000, it generates the second interruption I2101; the counter's current value is 45000, it generates the third interruption I2102.

See graph below:

Example 3: CAM function

Four numbers are stored in the registers starting from D4000 (dword). Then the HSC0 starts to count. When the counting value is equal to any of the four numbers, it will produce the interruption. Please see the following diagram:

5-11-3. HSC interruption cycle mode

Mode 1: Single loop (normal mode)

The HSC interruption will not happen after it ends. The following conditions can start the interruption again.

- reset the HSC
- Reboot the HSC activate condition

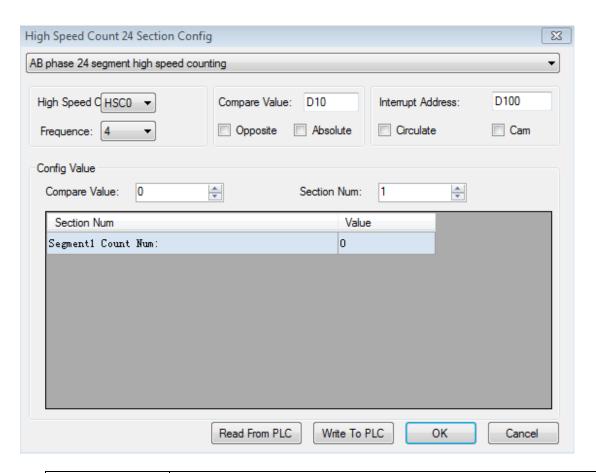
Mode 2: Continuous loop

Restart after HSC interruption ends. This mode is especially suitable for the following application:

- continuous back-forth movement
- > Generate cycle interruption according to the defined pulse

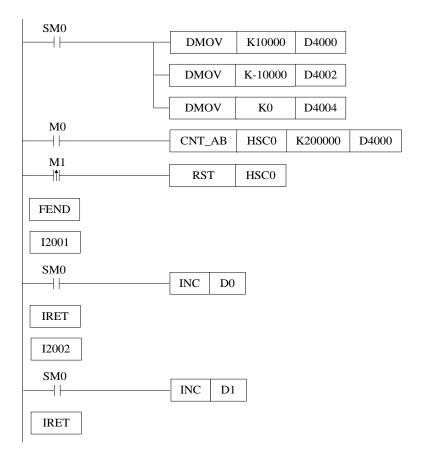
Via setting the special auxiliary relays SFD331, users can set the HSC interruption to be single loop mode or continuous loop mode. The continuous loop mode is only suitable for the relative counting. The detailed assignment is show below:

Address	HSC	Setting
Bit0	100 segments HSC interruption cycle (HSC0)	
Bit1	100 segments HSC interruption cycle (HSC2)	
Bit2	100 segments HSC interruption cycle (HSC4)	
Bit3	100 segments HSC interruption cycle (HSC6)	
Bit4	100 segments HSC interruption cycle (HSC8)	0: single loop
Bit5	100 segments HSC interruption cycle (HSC10)	1: continuous loop
Bit6	100 segments HSC interruption cycle (HSC12)	
Bit7	100 segments HSC interruption cycle (HSC14)	
Bit8	100 segments HSC interruption cycle (HSC16)	
Bit9	100 segments HSC interruption cycle (HSC18)	


5-11-4. Application of HSC interruption

Application 1:

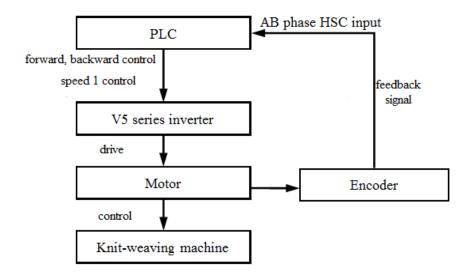
When M0 is ON, HSC0 starts counting from D4000. When it reaches the preset value, the interruption is produced. When the rising edge of M1 is coming, clear the HSC0.

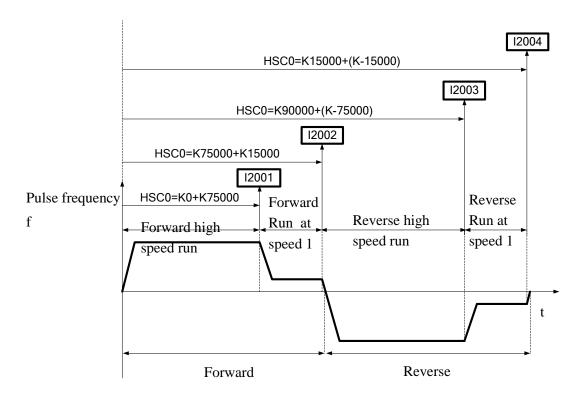

Method 1:

Configure the parameters through XDPpro software:

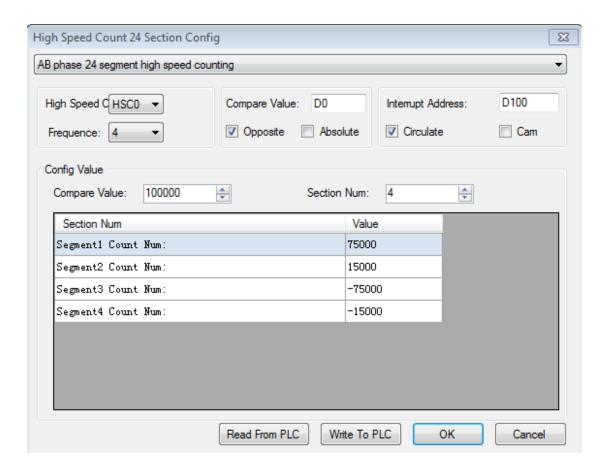
Configure item	Function
HSC	Choose HSC, the range is from HSC0 to HSC18
Frequency	Choose the HSC frequency times (2-time or 4-time)
Compare value	The value can be register or constant
Opposite absolute	The HSC is relative mode or absolute mode
Interrupt address	The starting registers to store 100 segments interruption preset value
Circulate	100 segments interruption mode is cycle or not
Cam	HSC CAM function available

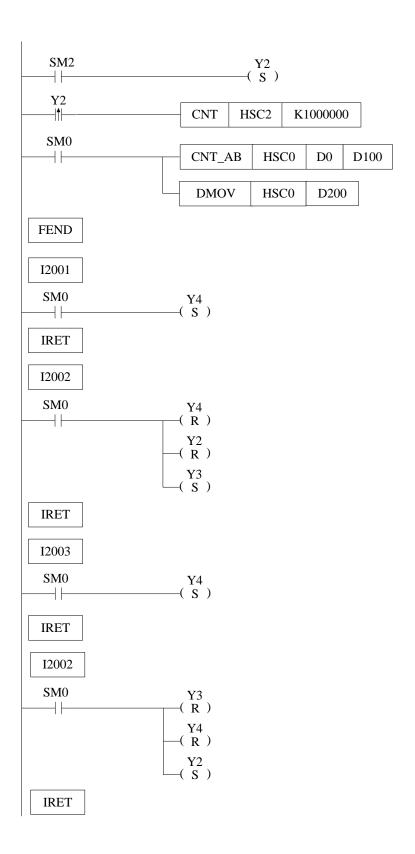
Method 2: make the program




Instruction:

```
LD SM0
                       //SM000 is normal ON coil
DMOV
           K10000 D4000
                                 //segment one preset value D4000 is 10000
DMOV
           K-10000 D4002
                                 //segment 2 preset value D4002 is -10000
DMOV
           K0
                    D4004
                                  //other segments are 0
LD
          M0
                              //HSC activate condition M0
CNT_AB HSC0
                                 D4000
                                           //HSC interruption instruction
                  K200000
LDP
          M1
                              //HSC reset condition M1
RST
          HSC0
                               //reset HSC and 100 segments interruption
FEND
                       //the main program end
I2001
                       //segment one interruption flag
LD SM000
                         //SM000 is normal ON coil
                              //D0 = D0 + 1
INC
          D0
IRET
                       //interruption return flag
I2002
                       //segment 2 interruption flag
                         //SM000 is normal ON coil
LD SM000
INC
          D1
                              //D1 = D1 + 1
IRET
                       //interruption return flag
```


Application 2: knit-weaving machine (continuous loop mode)

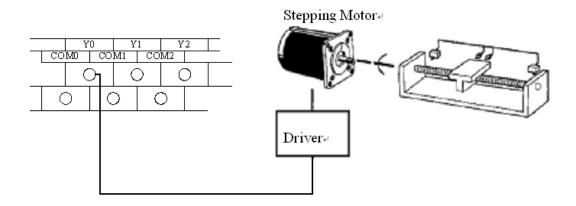

The machine principle: Control the inverter via PLC, thereby control the motor. Meantime, via the feedback signal from encoder, control the knit-weaving machine and the precise position.

Below is PLC program: Y2 represents forward output signal; Y3 represents reverse output signal; Y4 represents output signal of speed 1; HSC2: Back-forth times accumulation counter; HSC0: AB phase HSC;

Instruction List:

```
LD
        SM2
                              //SM002 is initial ON coil
SET
                             //set ON Y2 (forward run)
        Y2
LDP
        Y2
                             // Back-forth times activate condition Y2
CNT HSC2 K1000000
                                //HSC2 starts counting
LD
        SM<sub>0</sub>
                             //SM000 is normal ON coil
CNT_AB HSC0 D0 D100
                                 //HSC 100 segments first address
DMOV HSC0 D200
                              //read HSC0 counting value to D200
FEND
                         //main program end
I2001
                        //Interruption 1 flag
LD
        SM<sub>0</sub>
                              //SM000 is normal ON coil
SET
        Y4
                          //set ON Y4 (run at speed 1)
IRET
                        //interruption return
I2002
                        //interruption 2 flag
LD
        SM<sub>0</sub>
                              //SM000 is normal ON coil
RST
        Y4
                             //reset Y4 (stop running at speed 1)
RST
        Y2
                             //reset Y2 (stop forward running)
SET
        Y3
                             //set ON Y3 (reverse running)
IRET
                        //interruption return
I2003
                        //interruption 3 flag
LD
        SM<sub>0</sub>
                              //SM000 is normal ON coil
SET
                             //set ON Y4 (run at speed 1)
        Y4
IRET
                        //interruption return
I2004
                         //interruption 4 flag
LD
        SM<sub>0</sub>
                              //SM000 is normal ON coil
RST
        Y3
                             //reset Y3 (stop reverse running)
RST
        Y4
                             //reset Y4 (stop running at speed 1)
SET
        Y2
                             //set on Y2 (forward running)
IRET
                        //interruption return
```

6 PULSE OUTPUT


This chapter will introduce the pulse function of XD3 series PLC. The content includes pulse output instructions, input/output wiring, and notes, related coils and registers etc.

Pulse Output Instructions List

Instruction name	Function	Instruction	Chapter
Pulse output			
PLSR	Multi-segment pulse output	PLSR S0 S1 S2 D0	6-2-1
PLSF	Variable pulse output	PLSF S0 S1 S2 D0	6-2-2
ZRN	Return to mechanical origin	ZRN S0 D0	6-2-3
PLSMV	Refresh pulse quantity	PLSMV Yn	6-2-4
STOP	Stop pulse	STOP S0 S1	6-2-5

6-1. Functions Summary

Generally, XD3 series PLC have two pulse output channels. The pulse output modes include single direction pulse output without acceleration/deceleration, single direction pulse output with acceleration/deceleration, multi-segment double direction pulse output. The pulse frequency can up to 200 KHz.

*1: Please use transistor output terminal for pulse output. Such as XD3-14T-E, XD3-60T-E.

6-2. Pulse Output Types and Instructions

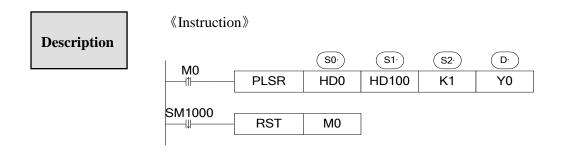
6-2-1. Multi-segment pulse output [PLSR]

1. Instruction summarization

Multi-segment pulse output

Multi-segment pulse output [PLSR]			
16 bits instruction		32 bits instruction	PLSR
Execution condition	Rising/falling edge	Suitable model	XD3
Hardware requirements	-	Software requirements	-

2. Operand


Operand	Function	Туре
S0	Pulse parameter start address	
S1	User parameter start address	
S2	System parameter block (1 ~4)	
D	Pulse output port	

3. Suitable soft components

	Operand					Sys	stem				Constant	Mo	dule
Word		D*	FD	TD*	1	D*	DX	DY	DM*	DS*	K/H	ID	QD
Word	S0	•	•	•	•	•	•	•	•	•			
	S1	•	•	•	•	•	•	•	•	•			
	S2	•	•								•		
.	Operand		System										
Bit		X	Y	M*	S*	T*	C*	Dn.m					
	D		•										
				<u> </u>									

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM.

DS includes DS, DHS; M includes M, HM, SM; S includes S, HS; T includes T and HT; C includes C and HC.

♦ Pulse parameter address:

Address	Contents	Mark
S0+0 (dword)	Pulse segment quantity (1~100)	
S0+2 (8 words)	Reserved (8 words)	
S0+10 (dword)	Pulse frequency	
S0+12 (dword)	Pulse quantity	
	bit15~bit8: wait condition	
	00: pulse sending end	
	01: wait time	
	02: wait signal	
	03: ACT time	
S0+14	04: EXT signal	
30+14	05: EXT signal or pulse sending end	
	bit7~bit0: wait condition register type	Segment 1
	00: constant	
	01: D	
	02: X	
	03: M	
S0+15 (dword)	Constant/register(waiting condition)	-
	bit7~bit0: jump register type	
S0+17	00: constant	
	01: D	
S0+18 (dword)	Constant/register (jump register)	
S0+N*10+0 (dword)	Pulse frequency	
S0+N*10+2 (dword)	Pulse quantity	Segment N
S0+N*10+4	Wait condition, wait condition register type	Segment IV
S0+N*10+5 (dword)	Constant or register (waiting condition)	

S0+N*10+7	Jump type, jump register type (waiting condition)	
S0+N*10+8 (dword)	Constant or register (jump register)	

(A) Waiting condition

Pulse sending end

Jump to the certain segment after executing the pulse

• Wait time

Add time delay after current segment finished, and then jump to the certain segment.

Wait signal

Wait for the wait signal after current segment finished. Jump to the certain segment when the signal arrives.

• ACT time

Pulse output until the ACT time arrives, and then jump to the certain segment.

EXT signal

If EXT signal is activated (OFF to ON) when pulse is outputting, it will jump to the certain segment. If EXT signal is not activated when the pulse output finished, it will continue waiting the EXT signal.

EXT signal or pulse sending end

It will jump to the certain segment when the signal arrives or the pulse output finished.

(B) Waiting condition register type

Constant

S0+N*10+5 (dword) the register value is constant.

• D

S0+N*10+5 (dword) the register value is D address

• X

S0+N*10+5 (dword) the register value is X address. If this signal is external interruption, the external interruption signal will activate it (faster response time).

• M

S0+N*10+5 (dword) the register value is M address.

(C) Jump register type

Constant

S0+N*10+8 (dword) the register value is constant.

• D

S0+N*10+8 (dword) the register value is D address.

* If jump register value is 0, it means jump to the next segment.

(D) Pulse parameters address

S1+0 (dword)	Pulse mode (0: relative mode; 1: absolute mode)
S1+2 (dword)	Pulse start segment (1~100)

** Pulse start segment means the pulse starting from which segment. 0 and 1 means starting from the first segment.

(E) System parameters

User will choose to use which group of parameters through this parameter. Each pulse output channel has system parameters. Each parameter has 4 groups of parameter. User needs to choose which group parameters in the 4 groups through S2.

Note: the following table is system parameters of frist pulse output channel (Y0). Other pulse channel parameters please refer to appendix 3.

		Bit 0: pulse output logic		
		0: positive logic(default setting)		
		1: negative logic,		
SFD900	Pulse parameters	Bit 1: pulse direction logic		
	•	0: positive logic(default setting) 1: negative logic		
		Bit 8: pulse unit		
		0: pulse quantity(default setting) 1: equivalent value		
SFD901	Reserved		-	
SFD902	Pulse quantity/ 1 rotation low 16 bits			
SFD903	Pulse quantity/ 1 rotation high 16 bits			PULSE_1
SFD904	Movement amount/1 rotation low 16 bits			
SFD905	Movement amount/1 rotation high 16 bits			
SFD906	Pulse direction terminal	The number of Y, 0xFF is no terminal	Public	
SFD907	Direction delay time	Default value is 20, unit is ms	parameter	
SFD908	Gear clearance positive compensation			
SFD909	Gear clearance negative compensation			
SFD910	Electrical origin low 16 bits			
SFD911	Electrical origin high 16 bits			

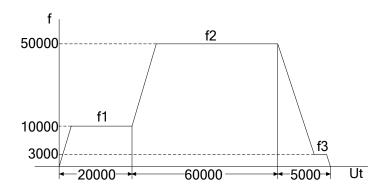
		Bit0: promixity switch	
SFD912	Machine back to origin parameters	state	
		0: normal open 1: normal close	
SFD913	Near signal terminal	Bit0~bit7: the X terminal number, 0xFF is no	
	Tion organic vermina	terminal	
SFD914	Z phase terminal	Bit0~bit7: the X terminal number, 0xFF is no	
51 15714	2 phase terminar	terminal	
		Bit7~bit0: limit 1 X terminal number, 0xFF is	
SFD915	Limit terminal	no terminal	
31 1913	Limit terminar	Bit15~bit8: limit 2 X	
		terminal number, 0xFF is no terminal	
GED016	Origin auxiliary signal	Bit0~bit7: X terminal	
SFD916	terminal	number, 0xFF is no terminal	
SFD917	CLR signal output	Bit0~bit7: Y terminal number, 0xFF is no	
51.0917	terminal	terminal	
SFD918	Back speed VH low 16 bits		
SFD919	Back speed VH high 16 bits		
SFD920	Back speed VL low 16 bits		
SFD921	Back speed VL high 16 bits		
SFD922	Creep speed low 16 bits		
SFD923	Creep speed high 16 bits		
SFD924	Mechanical origin low 16 bits		
SFD925	Mechanical origin high 16 bits		

SFD927 CL	LR signal delay time			
		Default value 20, unit: ms		
•••				
SED950	lse default speed low bits	Send pulse with default		
VHD971	lse default speed high bits	speed when speed is 0		
XH11957	lse default speed celeration time			
VHI IUS 4	lse default speed celeration time			
	veen celeration/deceleration ne		Casura 1	
SFD955 Res	eserved		Group 1 parameters	
SFD956 Ma	ax speed limit low 16 s			
SFD957 Ma	ax speed limit high 16 s			
SFD958 Sta	art speed low 16 bits			
SFD959 Sta	art speed high 16 bits			
SFD960 End	d speed low 16 bits			
SFD961 End	d speed high 16 bits			
XFD970	lse default speed low bits	Send pulse with default		
NF13971	lse default speed high bits	speed when speed is 0	Group 2 parameters	
X H11977	lse default speed celeration time			

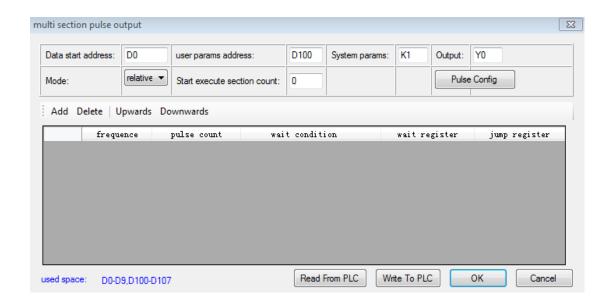
	Dulso default anged			
SFD973	Pulse default speed deceleration time			
SFD974	Tween acceleration/deceleration time			
SFD975	Reserved			
SFD976	Max speed limit low 16 bits			
SFD977	Max speed limit high 16 bits			
SFD978	Start speed low 16 bits			
SFD979	Start speed high 16 bits			
SFD980	End speed low 16 bits			
SFD981	End speed high 16 bits			
•••				
SFD990	Pulse default speed low 16 bits	Send pulse with default		
SFD991	Pulse default speed high 16 bits	speed when speed is 0		
SFD992	Pulse default speed acceleration time			
SFD993	Pulse default speed deceleration time			
SFD994	Tween acceleration/deceleration time		Group 3 parameters	
SFD995	Reserved			
SFD996	Max speed limit low 16 bits			
SFD997	Max speed limit high 16 bits			
SFD998	Start speed low 16 bits			
SFD999	Start speed high 16 bits			
	•			

SFD1000	End speed low 16 bits			
SFD1001	End speed high 16 bits			
•••				
SFD1010	Pulse default speed low 16 bits	Send pulse with default		
SFD1011	Pulse default speed high 16 bits	speed when speed is 0		
SFD1012	Pulse default speed acceleration time			
SFD1013	Pulse default speed deceleration time			
SFD1014	Tween acceleration/deceleration time		Group 4	
SFD1015	Reserved		parameters	
SFD1016	Max speed limit low 16 bits			
SFD1017	Max speed limit high 16 bits			
SFD1018	Start speed low 16 bits		-	
SFD1019	Start speed high 16 bits		-	
SFD1020	End speed low 16 bits		-	
SFD1021	End speed high 16 bits		-	
•••				

 $[\]ensuremath{\mathbb{X}}$ the pulse rising slope is based on pulse default speed and pulse rising time.


^{*} the pulse falling slope is based on pulse default speed and pulse falling time.

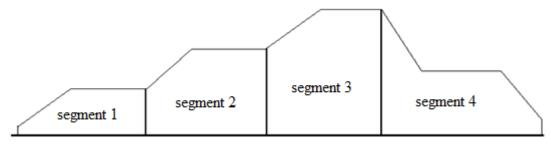
^{*} pulse output direction terminal is appointed by system parameters.


♦ Pulse interruption flag

	0	-
I60*(I6000~I6099)	PLS+0 (pulse)	100 segments interruption sublist address
I61**	PLS+1	Sublist address
I62**	PLS+2	Sublist address
I63**	PLS+3	Sublist address
I64**	PLS+4	Sublist address
I65**	PLS+5	Sublist address
I66**	PLS+6	Sublist address
I67**	PLS+7	Sublist address
I68**	PLS+8	Sublist address
I69**	PLS+9	Sublist address

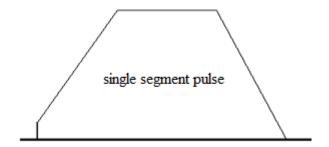
Instruction mode

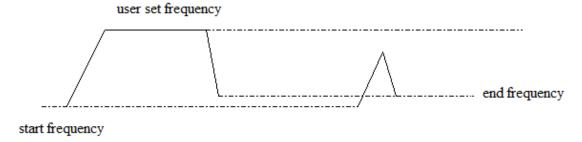
Pulse wave form



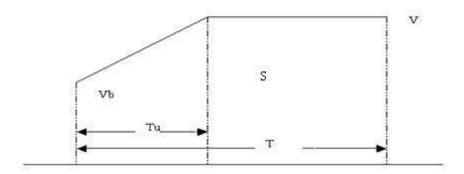
Pulse configuration window

1. Multi-segment pulse output

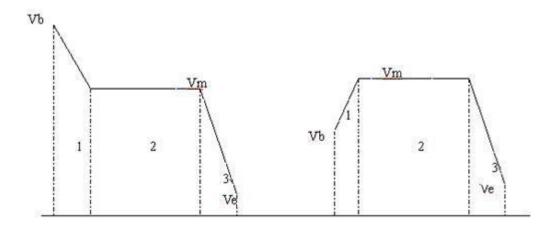

• Devide the pulse segment


- ✓ Devide the pulse segment as the above.
- ✓ Except the last segment, other segments contain rising and stable part.
- ✓ The last segment contains rising, falling and stable part.

Single segment pulse wave form


- ➤ There are enough pulse numbers
 - ✓ Pulse can up to the max frequency set by user, the wave form is ladder-shape

- ➤ There is few pulses
 - ✓ Pulse wave form is triangle



• Send one segment of pulse

- ✓ V: user set the frequency of current segment
- ✓ S: pulse amounts of current segment
- ✓ Vb: start frequency of current segment
- ✓ T: sending pulse time of current segment
- ✓ Tu: pulse rising/falling time (Tu = (V-VB) / K, K is slope)

• The last segment

The last segment contains rising, falling and stable part.

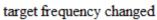
Pulse amounts is 0

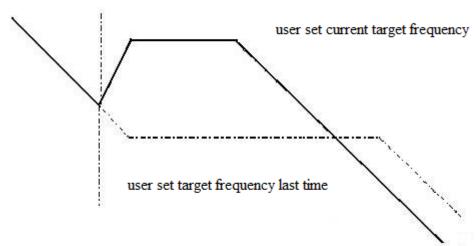
If pulse amounts or frequency is 0, it will send pulse with default speed.

• Modify the pulse frequency dynamically

enough pulse amounts

Not the last segment


user set current target frequency


user set target frequency last time

few pulse amounts

If user changes the current pulse frequency, it will get to the target frequency with the slope.

The last segment

If user changes the current frequency, PLC will send pulse as the new pulse wave.

• The interruption is produced when each segment ends

I60**(I6000~I6099)	PLS+0(pulse)	100 segments interruption sublist address
I61**(I6100~I6099)	PLS+1(pulse)	Sublist address
I62**(I6200~I6099)	PLS+2(pulse)	Sublist address
I63**(I6300~I6099)	PLS+3(pulse)	Sublist address
I64**(I6400~I6099)	PLS+4(pulse)	Sublist address
I65**(I6500~I6099)	PLS+5(pulse)	Sublist address
I66**(I6600~I6099)	PLS+6(pulse)	Sublist address
I67**(I6700~I6099)	PLS+7(pulse)	Sublist address
I68**(I6800~I6099)	PLS+8(pulse)	Sublist address
I69**(I6900~I6099)	PLS+9(pulse)	Sublist address

Each pulse channel has 100 segments. The interruption program will be executed when this segment end.

Application 1

There are 3 pulse segments. Pulse channel is Y0. Pulse direction channel is Y2. All the parameters please see below tables.

Name	Frequency (Hz)	Pulse amounts
Segment 1	1000	2000
Segment 2	200	1000
Segment 3	2000	6000
Acceleration/deceleration	Frequency changes 1000Hz every 100ms	

Pulse parameters address:

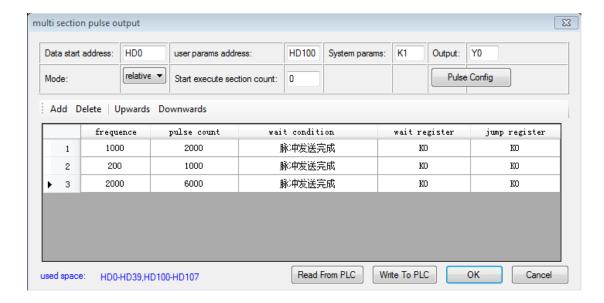
Address	Explanation	Value
HD0 (dword)	Pulse segment quantity (1~100)	3
HD2 (8 words)	Reserved (8 words)	0
HD10 (dword)	Pulse frequency (segment 1)	1000
HD12 (dword)	Pulse quantity (segment 1)	2000
	bit15~bit8: wait condition (segment 1)	
	00: pulse sending end	
	01: wait time	
	02: wait signal	
	03: ACT time	
HD14	04: EXT signal	0
	05: EXT signal or pulse sending end	
	bit7~bit0: wait condition register type	
	00: constant	
	01: D	
	02: X	

	03: M	
HD15 (dword)	Constant/register(waiting condition) (segment 1)	0
	bit7~bit0: jump register type	
HD17	00: constant	0
	01: D	
HD+18 (dword)	Constant/register (jump register) (segment 1)	0
HD+20 (dword)	Pulse frequency (segment 2)	200
HD+22 (dword)	Pulse quantity (segment 2)	1000
HD+24	Wait condition, wait condition register type (segment 2)	0
HD+25 (dword)	Constant or register (waiting condition) (segment 2)	0
HD+27	Jump type, jump register type (waiting condition) (segment 2)	0
HD+28 (dword)	Constant or register (jump register) (segment 2)	0
HD+30 (dword)	Pulse frequency (segment 3)	2000
HD+32 (dword)	Pulse quantity (segment 3)	6000
HD+34	Wait condition, wait condition register type (segment 3)	0
HD+35 (dword)	Constant or register (waiting condition) (segment 3)	0
HD+37	Jump type, jump register type (waiting condition) (segment 3)	0
HD+38 (dword)	Constant or register (jump register) (segment 3)	0

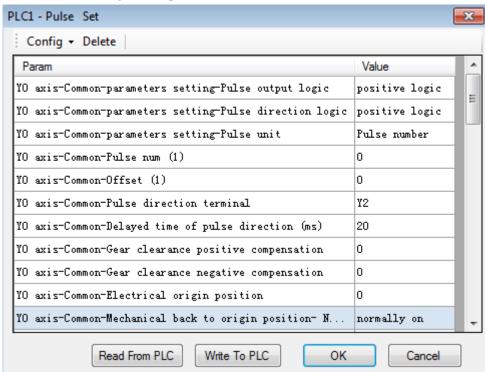
System parameters address:

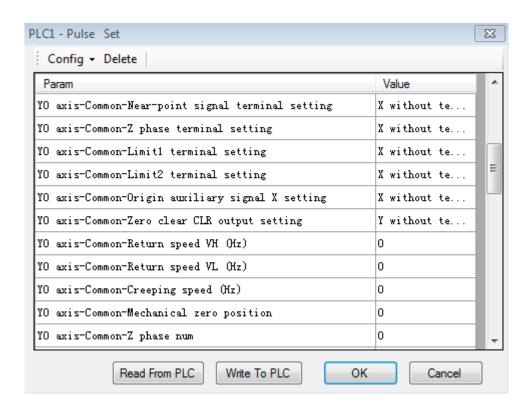
		D'4 01		
		Bit 0: pulse output logic		
		0: positive logic(default setting)		
		1: negative logic,		
gED 000		Bit 1: pulse direction logic		
SFD900	Pulse parameters	0: positive logic(default setting) 1: negative logic	0	
		Bit 8: pulse unit		
		0: pulse quantity(default setting) 1: equivalent value		
SFD901	Reserved			
SFD902	Pulse quantity/ 1 rotation low 16 bits		0	-
SFD903	Pulse quantity/ 1 rotation high 16 bits		0	Pul
SFD904	Movement amount/1 rotation low 16 bits		0	Public parameters
SFD905	Movement amount/1 rotation high 16 bits		0	neters
SFD906	Pulse direction terminal	The number of Y, 0xFF is no terminal	2	
SFD907	Direction delay time	Default value is 20, unit is ms	20	
SFD908	Gear clearance positive compensation		0	-
SFD909	Gear clearance negative compensation		0	
SFD910	Electrical origin low 16 bits		0	-
SFD911	Electrical origin high 16 bits		0	
SFD912	Machine back to origin parameters	Bit0: promixity switch state 0: normal open 1: normal close	0	-

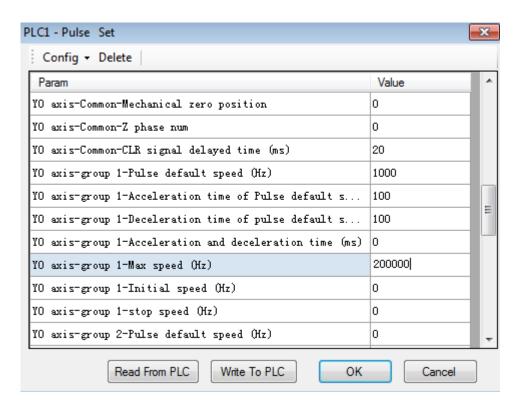
SFD913	Near signal terminal	Bit0~bit7: the X terminal number, 0xFF is no terminal	0xFF
SFD914	Z phase terminal	Bit0~bit7: the X terminal number, 0xFF is no terminal	0xFF
SFD915	Limit terminal	Bit7~bit0: limit 1 X terminal number, 0xFF is no terminal Bit15~bit8: limit 2 X terminal number, 0xFF is no terminal	FFFF
SFD916	Origin auxiliary signal terminal	Bit0~bit7: X terminal number, 0xFF is no terminal	0xFF
SFD917	CLR signal output terminal	Bit0~bit7: Y terminal number, 0xFF is no terminal	0xFF
SFD918	Back speed VH low 16 bits		0
SFD919	Back speed VH high 16 bits		0
SFD920	Back speed VL low 16 bits		0
SFD921	Back speed VL high 16 bits		0
SFD922	Creep speed low 16 bits		0
SFD923	Creep speed high 16 bits		0
SFD924	Mechanical origin low 16 bits		0
SFD925	Mechanical origin high 16 bits		0
SFD926	Z phase quantity		0
SFD927	CLR signal delay time	Default value 20, unit: ms	20


SFD950	Pulse default speed low 16 bits	Send pulse with default speed when speed is 0	1000	
SFD951	Pulse default speed high 16 bits		0	
SFD952	Pulse default speed acceleration time		100	
SFD953	Pulse default speed deceleration time		100	
SFD954	Tween acceleration/deceleration time		0	Group
SFD955	Reserved) 1 pa
SFD956	Max speed limit low 16 bits		3392	Group 1 parameters
SFD957	Max speed limit high 16 bits		3	
SFD958	Start speed low 16 bits		0	
SFD959	Start speed high 16 bits		0	
SFD960	End speed low 16 bits		0	
SFD961	End speed high 16 bits		0	
•••				

Pulse instruction




${\bf XCPpro\ software\ configuration:}$


> Pulse segment configuration



Pulse configuration parameters

As the above diagram, there are three segments. The distance between A, B, C is unknown. The distance of A-B, B-C, working oring-A are the same, but the moving speed is different. The instruction PLSR can make the function. First, install three proximity switches at A, B, C. then connect them to PLC terminal X0, X1, X2. Pulse output terminal is Y0, pulse direction terminal is Y2. All the parameters please refer to the following table.

Name	Frequency (Hz)	Pulse amounts
Working origin-A	1000	99999999
A-B	3000	99999999
В-С	2000	99999999
Acceleration deceleration time	Frequency changes 1000Hz every 100ms	

Note: as the pulse amounts of each segment is unknown, set a large value to make sure the object can move to the proximity switch. When the object reaches C, urgent stops the object with STOP instruction.

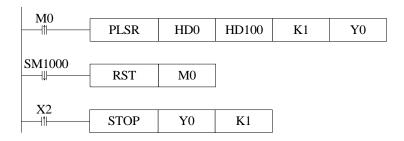
Pulse parameter address:

Address	Explanation	Value
HD0 (dword)	Pulse segment quantity (1~100)	3
HD2 (8 words)	Reserved (8 words)	0
HD10 (dword)	Pulse frequency (segment 1)	1000
HD12 (dword)	Pulse quantity (segment 1)	99999999
HD14	bit15~bit8: wait condition (segment 1) 00: pulse sending end	1026

O1: wait time O2: wait signal O3: ACT time O4: EXT signal O5: EXT signal or pulse sending end bit7-bit0: wait condition register type O0: constant O1: D O2: X O3: M HD15 (dword) Constant/register(waiting condition) (segment 1) O1: D HD+18 (dword) Constant/register (jump register) (segment 1) O1: D HD+20 (dword) Pulse frequency (segment 2) (dword) Pulse quantity (segment 2) (dword) HD+24 Wait condition, wait condition register type (segment 2) HD+25 (dword) Constant or register (waiting condition) (segment 2) (dword) HD+27 Jump type, jump register type (waiting condition) (segment 2) HD+28 (dword) Constant or register (jump register) (segment 2) (dword) Pulse frequency (segment 3) O HD+30 (dword) Pulse frequency (segment 3) O Pulse quantity (segment 3)		24 1 1	
03: ACT time 04: EXT signal 05: EXT signal or pulse sending end bit7-bit0: wait condition register type 00: constant 01: D 02: X 03: M HD15 (dword) Constant/register(waiting condition) (segment 1) 0 bit7-bit0: jump register type 00: constant 01: D HD+18 (dword) Constant/register (jump register) (segment 1) 0 constant/register (jump register) (segment 1) 0 pulse frequency (segment 2) 0 dword) HD+20 (dword) Pulse quantity (segment 2) 0 py9999999 HD+24 Wait condition, wait condition register type (segment 2) HD+25 (dword) Constant or register (waiting condition) (segment 2) 1 HD+27 Jump type, jump register type (waiting condition) (segment 2) 0 hD+28 (dword) Pulse frequency (segment 3) 0 pulse frequency (segment 3)		01: wait time	
04: EXT signal 05: EXT signal or pulse sending end bit7-bit0: wait condition register type 00: constant 01: D 02: X 03: M HD15 (dword) Constant/register(waiting condition) (segment 1) 0 bit7-bit0: jump register type HD17 00: constant 01: D HD+18 (dword) Constant/register (jump register) (segment 1) 0 HD+20 (dword) Pulse frequency (segment 2) 3000 HD+22 (dword) Pulse quantity (segment 2) 999999999 HD+24 Wait condition, wait condition register type (segment 2) 1 HD+25 (dword) Constant or register (waiting condition) (segment 2) 1 HD+27 Jump type, jump register type (waiting condition) (segment 2) 0 HD+28 (dword) Pulse frequency (segment 3) 2000		02: wait signal	
05: EXT signal or pulse sending end bit7-bit0: wait condition register type 00: constant 01: D 02: X 03: M HD15 (dword) Constant/register(waiting condition) (segment 1) 0 bit7-bit0: jump register type HD17 00: constant 01: D HD+18 (dword) Pulse frequency (segment 2) 3000 HD+20 (dword) Pulse quantity (segment 2) 99999999999999999999999999999999999		03: ACT time	
bit7~bit0; wait condition register type 00: constant 01: D 02: X 03: M HD15 (dword) Constant/register(waiting condition) (segment 1) 0 bit7~bit0: jump register type 00: constant 01: D HD+18 (dword) Constant/register (jump register) (segment 1) 0 HD+20 (dword) Pulse frequency (segment 2) 3000 HD+22 (dword) Pulse quantity (segment 2) 99999999999999999999999999999999999		04: EXT signal	
00: constant 01: D 02: X 03: M HD15 (dword) Constant/register(waiting condition) (segment 1) 0 bit7~bit0: jump register type HD17 00: constant 01: D HD+18 (dword) Pulse frequency (segment 2) 3000 HD+20 (dword) Pulse quantity (segment 2) 99999999999999999999999999999999999		05: EXT signal or pulse sending end	
HD15 (dword) Constant/register (waiting condition) (segment 1) 0 HD17 O0: constant 01: D HD+18 (dword) Constant/register (jump register) (segment 1) 0 HD+20 (dword) Pulse frequency (segment 2) 3000 HD+22 (dword) Pulse quantity (segment 2) 99999999999999999999999999999999999		bit7~bit0: wait condition register type	
HD15 (dword) Constant/register(waiting condition) (segment 1) 0 HD17 00: constant 01: D HD+18 (dword) Pulse frequency (segment 2) 3000 HD+22 (dword) Pulse quantity (segment 2) 999999999 HD+24 Wait condition, wait condition register type (segment 2) 1026 HD+25 (dword) Constant or register (waiting condition) (segment 2) 1 HD+27 Jump type, jump register type (waiting condition) (segment 2) 0 HD+28 (dword) Pulse frequency (segment 3) 2000		00: constant	
HD15 (dword) Constant/register(waiting condition) (segment 1) 0 bit7~bit0: jump register type HD17 00: constant 01: D HD+18 (dword) Pulse frequency (segment 2) 3000 HD+20 (dword) Pulse quantity (segment 2) 99999999999999999999999999999999999		01: D	
HD15 (dword) Constant/register(waiting condition) (segment 1) bit7~bit0: jump register type 00: constant 01: D HD+18 (dword) Pulse frequency (segment 2) (dword) HD+20 (dword) Pulse quantity (segment 2) (dword) HD+21 Wait condition, wait condition register type (segment 2) HD+24 Wait condition, wait condition register type (segment 2) 1026 HD+25 (dword) Constant or register (waiting condition) (segment 2) HD+27 Jump type, jump register type (waiting condition) (segment 2) 0 HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse frequency (segment 3) 2000		02: X	
HD+18 (dword) HD+20 (dword) HD+22 (dword) HD+24 Wait condition, wait condition register type (segment 2) HD+25 (dword) HD+25 (dword) Constant or register (waiting condition) (segment 2) HD+27 Jump type, jump register type (waiting condition) (segment 2) HD+28 (dword) Pulse frequency (segment 3) Constant or register (jump register) (segment 2) Dulse quantity (segment 2) Dulse quantity (segment 2) Pulse quantity (segment 2) Dulse quantity (segment 3)		03: M	
HD17 00: constant 01: D HD+18 (dword) Constant/register (jump register) (segment 1) 0 HD+20 (dword) Pulse frequency (segment 2) (dword) Pulse quantity (segment 2) 999999999999999999999999999999999999	HD15 (dword)	Constant/register(waiting condition) (segment 1)	0
HD17 00: constant 01: D HD+18 (dword) Constant/register (jump register) (segment 1) 0 HD+20 (dword) Pulse frequency (segment 2) (dword) Pulse quantity (segment 2) 999999999999999999999999999999999999		hit7~hit0: jump register type	
HD+18 (dword) Constant/register (jump register) (segment 1) HD+20 (dword) Pulse frequency (segment 2) HD+22 (dword) Pulse quantity (segment 2) HD+24 (segment 2) HD+25 (dword) Constant or register (waiting condition) (segment 2) HD+27 Jump type, jump register type (waiting condition) (segment 2) HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse guestity (segment 3) Pulse guestity (segment 2) Pulse guestity (segment 3)	IID 17		
HD+18 (dword) Constant/register (jump register) (segment 1) HD+20 (dword) Pulse frequency (segment 2) 3000 HD+22 (dword) HD+24 Wait condition, wait condition register type (segment 2) HD+25 (dword) Constant or register (waiting condition) (segment 2) HD+27 Jump type, jump register type (waiting condition) (segment 2) HD+28 (dword) Constant or register (jump register) (segment 2) HD+28 (dword) Pulse frequency (segment 3) Pulse graphity (segment 2) Pulse graphity (segment 2) Pulse graphity (segment 2)	HD17		0
HD+20 (dword) Pulse frequency (segment 2) HD+22 (dword) Pulse quantity (segment 2) Pulse quantity (segment 2) Pulse quantity (segment 2) Pulse quantity (segment 2) HD+24 (segment 2) Pulse (segment 2) Constant or register (waiting condition) (segment 2) HD+25 (dword) Jump type, jump register type (waiting condition) (segment 2) HD+27 (segment 2) Dulse (dword) Pulse frequency (segment 3) Pulse guaratity (segment 3) Occupance of the pulse of t		01: D	
HD+20 (dword) HD+22 (dword) Pulse frequency (segment 2) HD+22 (dword) Wait condition, wait condition register type (segment 2) HD+24 (segment 2) Constant or register (waiting condition) (segment 2) HD+25 (dword) Jump type, jump register type (waiting condition) (segment 2) HD+27 (segment 2) O HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse greentity (segment 3) O O O O O O O O O O O O O		Constant/register (jump register) (segment 1)	0
HD+22	(dword)		Ů
HD+22 (dword) HD+24 (segment 2) HD+25 (dword) Constant or register (waiting condition) (segment 2) HD+27 Jump type, jump register type (waiting condition) (segment 2) HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse greentity (segment 3) Delea greentity (segment 2) Pulse greentity (segment 2) Pulse greentity (segment 2)		Pulse frequency (segment 2)	3000
(dword) HD+24 Wait condition, wait condition register type (segment 2) 1026 HD+25 (dword) Constant or register (waiting condition) (segment 2) HD+27 Jump type, jump register type (waiting condition) (segment 2) (segment 2) O HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse frequency (segment 3) Pulse quartity (segment 2) O O O O O O O O O O O O O	(dword)		
HD+24 Wait condition, wait condition register type (segment 2) HD+25 (dword) Constant or register (waiting condition) (segment 2) HD+27 Jump type, jump register type (waiting condition) (segment 2) HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse frequency (segment 3) Pulse quentity (segment 2)		Pulse quantity (segment 2)	99999999
HD+25 (dword) Constant or register (waiting condition) (segment 2) HD+27 Jump type, jump register type (waiting condition) (segment 2) HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse frequency (segment 3) Pulse quertity (segment 2)	(dword)		
HD+25 (dword) Constant or register (waiting condition) (segment 2) HD+27 Jump type, jump register type (waiting condition) (segment 2) HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse frequency (segment 3) 2000	HD+24		1026
(dword) HD+27 Jump type, jump register type (waiting condition) (segment 2) O HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse frequency (segment 3) 2000		(segment 2)	
HD+27 Jump type, jump register type (waiting condition) (segment 2) HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse frequency (segment 3) 2000		Constant or register (waiting condition) (segment 2)	1
HD+27 (segment 2) 0 HD+28 (dword) Constant or register (jump register) (segment 2) 0 HD+30 (dword) Pulse frequency (segment 3) 2000	(dword)		
HD+28 (dword) Constant or register (jump register) (segment 2) HD+30 (dword) Pulse frequency (segment 3) 2000	HD+27		0
(dword) HD+30 (dword) Pulse frequency (segment 3) 2000			
HD+30 (dword) Pulse frequency (segment 3) 2000		Constant or register (jump register) (segment 2)	0
(dword) 2000 (dwor			
Pulse quantity (segment 2)		Pulse frequency (segment 3)	2000
HD+32 Pulse quantity (segment 3) 999999999	,,	Dulas quantity (aggreent 2)	00000000
	HD+32	Pulse quantity (segment 3)	999999999

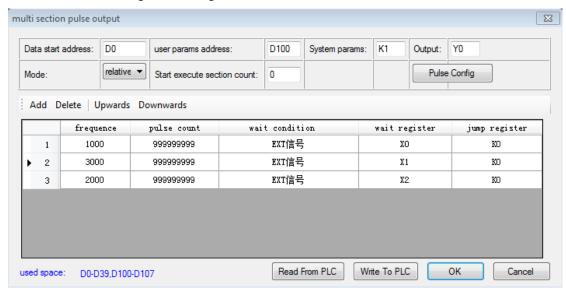
(dword)		
HD+34	Wait condition, wait condition register type (segment 3)	1026
HD+35 (dword)	Constant or register (waiting condition) (segment 3)	2
HD+37	Jump type, jump register type (waiting condition) (segment 3)	0
HD+38 (dword)	Constant or register (jump register) (segment 3)	0

System parameter address:

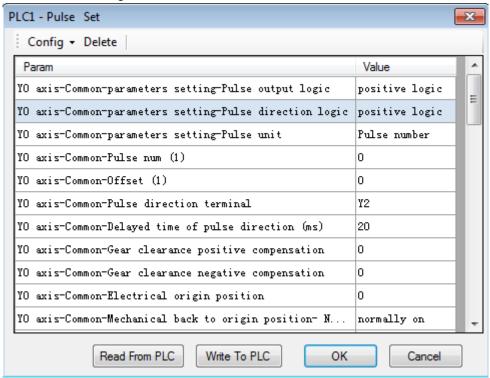

SFD900	Pulse parameters	Bit 0: pulse output logic 0: positive logic(default setting) 1: negative logic, Bit 1: pulse direction logic 0: positive logic(default setting) 1: negative logic Bit 8: pulse unit 0: pulse quantity(default setting) 1: equivalent value	0	Pu
SFD901	Reserved	2.04		Public parameter
SFD902	Pulse quantity/ 1 rotation low 16 bits		0	ameter
SFD903	Pulse quantity/ 1 rotation high 16 bits		0	
SFD904	Movement amount/1 rotation low 16 bits		0	
SFD905	Movement amount/1 rotation high 16 bits		0	
SFD906	Pulse direction terminal	The number of Y, 0xFF is no terminal	2	

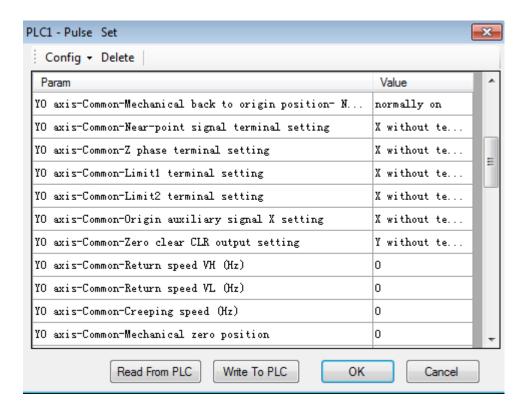
a===	- · · · ·	5 0 1 1 1 60	20
SFD907	Direction delay time	Default value is 20, unit is ms	20
SFD908	Gear clearance positive compensation		0
SFD909	Gear clearance negative compensation		0
SFD910	Electrical origin low 16 bits		0
SFD911	Electrical origin high 16 bits		0
SFD912	Machine back to origin parameters	Bit0: promixity switch state 0: normal open 1: normal close	0
SFD913	Near signal terminal	Bit0~bit7: the X terminal number, 0xFF is no terminal	0xFF
SFD914	Z phase terminal	Bit0~bit7: the X terminal number, 0xFF is no terminal	0xFF
SFD915	Limit terminal	Bit7~bit0: limit 1 X terminal number, 0xFF is no terminal Bit15~bit8: limit 2 X terminal number, 0xFF is no terminal	FFFF
SFD916	Origin auxiliary signal terminal	Bit0~bit7: X terminal number, 0xFF is no terminal	0xFF
SFD917	CLR signal output terminal	Bit0~bit7: Y terminal number, 0xFF is no terminal	0xFF
SFD918	Back speed VH low 16 bits		0
SFD919	Back speed VH high 16 bits		0
SFD920	Back speed VL low 16 bits		0
SFD921	Back speed VL high 16 bits		0
SFD922	Creep speed low 16 bits		0

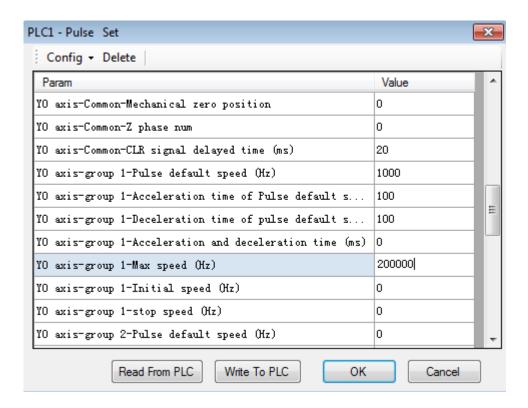
SFD923	Creep speed high 16 bits		0	
SFD924	Mechanical origin low 16 bits		0	-
SFD925	Mechanical origin high 16 bits		0	•
SFD926	Z phase quantity		0	-
SFD927	CLR signal delay time	Default value 20, unit: ms	20	-
SFD950	Pulse default speed low 16 bits	Send pulse with default speed	1000	
SFD951	Pulse default speed high 16 bits	when speed is 0	0	
SFD952	Pulse default speed acceleration time		100	
SFD953	Pulse default speed deceleration time		100	
SFD954	Tween acceleration/deceleration time		0	Group
SFD955	Reserved			<u> </u>
SFD956	Max speed limit low 16 bits		3392	parameters
SFD957	Max speed limit high 16 bits		3	-
SFD958	Start speed low 16 bits		0	
SFD959	Start speed high 16 bits		0	
SFD960	End speed low 16 bits		0	
SFD961	End speed high 16 bits		0	

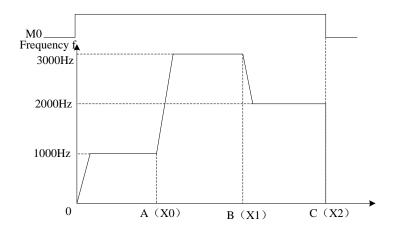

• • • •		

Pulse instruction:




The configuration in the XDPpro software:


> Pulse segment configuration


Pulse configuration

Pulse wave form:

6-2-2. Variable frequency pulse output [PLSF]

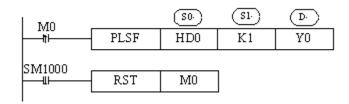
1. Summarization

Variable frequency pulse output instruction

Variable frequency pulse output [PLSF]					
16 bits instruction		32 bits instruction	PLSF		
Execution condition	Rising/ falling pulse edge	Suitable model	XD3		
Hardware requirements	-	Software requirements	-		

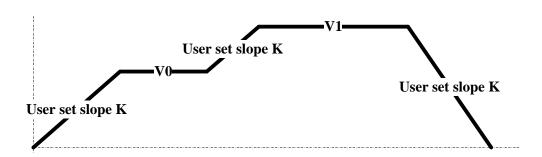
2. Operand

Operand	Function	Туре
S0	Pulse frequency address	
S1	System parameters (1~4)	
D	Pulse output terminal	


3. Suitable soft component

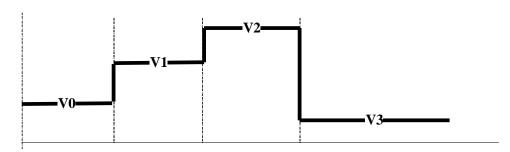
	Onemand									Constant	Ma	dula		
	Operand					Sy	stem				Constant	Module		
Word		D^*	FD	TD)* (CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	S0	•	•	•	,	•	•	•	•	•				
	S1	•	•											
	Operand		<u> </u>		Syst	em			 7					
	operana													
Bit		X	Y	M*	S*	T*	C*	Dn.m						
	D		•											
		l												

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

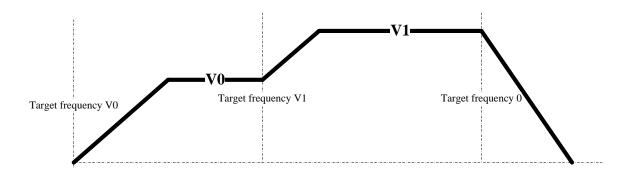

Description

《Instruction》

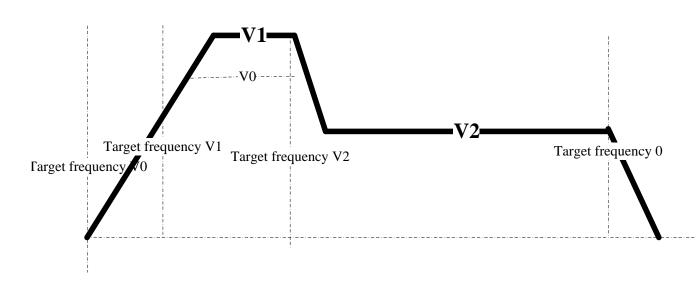
- Frequency range: 1Hz ~200KHz
- Pulse can output from Y0 or Y1
- The frequency output from Y0 is changing as the S0 setting frequency
- Accumulate the pulse amounts in register HSD0 (dword)
- Dynamic adjust the pulse as the slope when frequency jumped
- The system parameters are the same to PLSR instruction


Output mode

- (1) The pulse output direction is set through system parameters
- (2) When S0 is 0, PLSF stop pulse output
- (3) The instruction will adjust the pulse output as the frequency and slope set by user. If user set the frequency to 0, the current segment frequency will fall to 0 then output as default pulse speed.

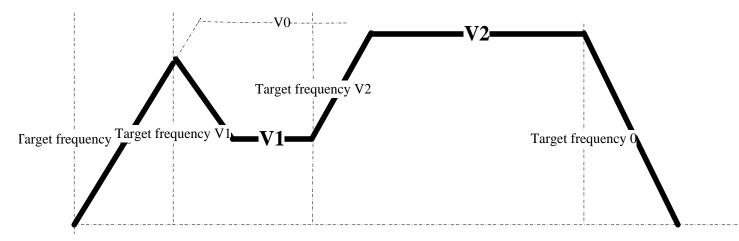

♦ Analysis of different modes

(A) Default pulse speed, acceleration/deceleration time is 0



The pulse frequency will jump as the user set frequency

- (B) Default pulse speed, acceleration/deceleration time is not 0
- (1) The pulse is in stable period when the user set new frequency. The pulse will change to target frequency with set slope.



(2) The pulse is not in stable period when the user set new frequency. The pulse will change to target frequency with set slope (the current set frequency will be considered as target if it is larger than last set frequency. If user set new frequency V1 before the pulse reaches set

frequency V0 (V1>V0), the pulse will change to V1 as the set slope.

(3) The pulse is not in stable period when the user set new frequency. The pulse will change to target frequency with set slope (current set frequency < last set frequency, current set

frequency < current frequency). The user set new frequency V1 before pulse reaches set frequency V0 (V1<V0, V1< current frequency), the pulse will change to V1 with set slope.

6-2-3. Mechanical zero return [ZRN]

1. Instruction summary

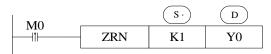
Pulse instruction of mechanical zero return

Mechanical ze	ro return[ZRN]		
16 bits instruction		32 bits instruction	ZRN
Execution condition	Rising/falling edge trigger	Suitable type	XD3
Hardware requirement	-	Software requirement	-

2. Operands

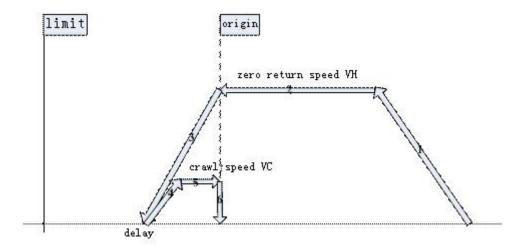
operands	Function	type
S	Specify system parameters ID number	
D	Specify pulse output terminal number	

3. suitable soft component


Word	operands		System						constant	mod	dule	
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S	•	•	•	•	•	•	•	•			
	operands System											
	operands			S	ystem							
Bit	operands	X	Y	•	ystem S* T*	C*	Dn.m					

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

Function and


《Instruction form》

Its system parameters block is the same with PLSR, please refer to PLSR system parameters block.

> no Z phase signal, no limit signal:

By mechanical zero signal and limit, no origin auxiliary signal; or come near the mechanical zero signal when mechanical zero return begins:

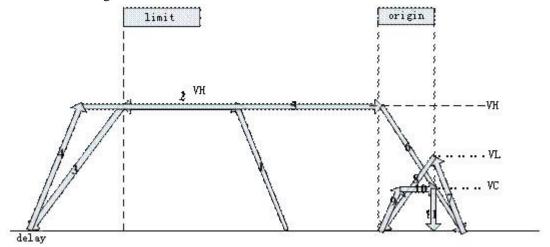
Action description:

- (1) Accelerate to speed VH with slope K in origin return direction.
- (2) Decelerate to VL with slope K when encountering origin auxiliary signal.
- (3) Decelerate to 0 with slope K when touching the origin.
- (4) Delay(direction delay in SFD), accelerate to crawl speed with slope K, and stop action once leaving the origin; Output clear signal immediately and delay if 'zero return CLR signal' is set. (CLR signal delay in SFD can use 'zero return CLR signal' output to clear Error Counter of servo motor), then copy mechanical origin to the current position, zero return is finished.

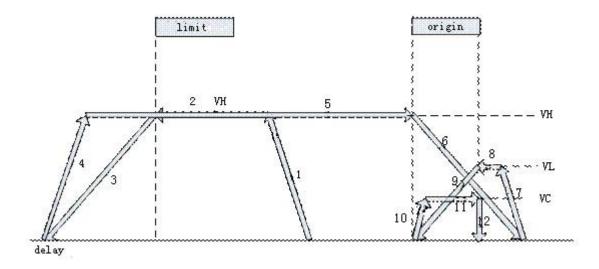
Note: (some special occasions)

- (1) Decelerate to 0 with slope K immediately if it reaches the origin during the process that ZRN start to accelerate; delay (direction delay in SFD), then accelerate to VH with slope K, output clear signal immediately and delay (CLR signal delay in SFD can use 'zero return CLR signal' output to clear Error Counter of servo motor) if 'zero return CLR signal' is set, then copy mechanical origin to the current position, zero return is finished.
- (2) Decelerate with slope K when encountering origin signal, as mechanical origin structure is short, it may haven't slowed down to 0 when passes the origin, it will still decelerate to 0; After delay (Direction delay in SFD), accelerate to VH with slope K backwards, the moment it leaves origin (near point sensing signal 1→0), output clear signal immediately and delay if 'zero return CLR signal' is set. (CLR signal delay in SFD can use 'zero return CLR signal' output to clear Error Counter of servo motor), then copy mechanical origin to current position, zero return is finished.

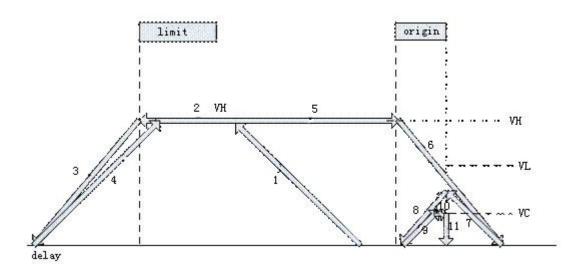
Action description:


- (1) Accelerate to speed VH with slope K and in origin return direction.
- (2) Decelerate to VL with slope K when encountering origin auxiliary signal.
- (3) Decelerate to 0 with slope K when encountering origin signal.
- (4) Delay (direction delay in SFD), and accelerate to crawl speed backwards with acceleration time slope. The moment it leaves origin signal, Z phase input signal starts to count.
- (5) Stop action when Z phase signal counter reaches the set value. Output clear signal and delay if 'zero return CLR signal' is set. (CLR signal delay in SFD can use 'zero return CLR signal' output to clear Error Counter of servo motor), then copy mechanical origin to the current position, zero return is finished.

Note: (some special occasions)

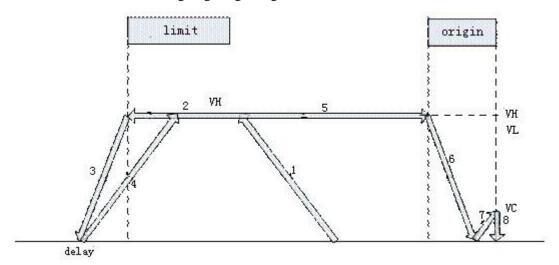

- (1) Decelerate to VL immediately with set slope if touching mechanical origin during the process that ZRN start to accelerate, and come near to origin signal at speed VL, the following action description is the same with above.
- (2) Decelerate to 0 with deceleration slope when touching origin signal during the process that it decelerates with set slope from origin auxiliary signal.
- (3) Decelerate with deceleration slope when encountering origin signal, as mechanical origin structure is short, it may haven't slowed down to 0 when passes the origin, it will still decelerate to 0; After delay (Direction delay in SFD), accelerate to VH with acceleration slope backwards, the moment it leaves origin (near point sensing signal 1→0), output clear signal immediately and delay if 'zero return CLR signal' is set. (CLR signal delay in SFD can use 'zero return CLR signal' output to clear Error Counter of

servo motor), then copy mechanical origin to current position, zero return is finished.


- come across the limit at first
- Before back to mechanical origin, the device is between left limit switch and origin switch, decelerate when touching origin, and pass origin switch before speed reaching 0:

Situation 1

Situation 2



Situation 3

Action description:

- (1) Accelerate to speed VH with acceleration slope(zero return speed) in origin return direction until touch limit switch.
- (2) Decelerate to 0 with deceleration slope when touching limit switch, then accelerate in the direction that is opposite with origin return direction, decelerate to 0 when touching limit switch, then accelerate in the origin return opposite direction until touch origin switch, decelerate to 0 with set deceleration slope.
- (3) When accelerate to VL with set slope, three possible situations may occur as the acceleration and deceleration slope is different
 - Decelerate to 0 with deceleration slope, during the process accelerate to VL the moment touching the origin right signal;
 - Move on at speed VL until touching origin signal right side, if it still does not touch origin right signal when accelerates to VL with acceleration slope. Decelerate to 0 when touch the origin signal right side;
 - Decelerate to 0 with set deceleration slope, when accelerate with set acceleration slope and it has touched origin signal right side before reaching speed VL.
- (4) Any situation in (3), accelerate to VC (crawl speed) with acceleration slope in the opposite direction after decelerating to 0 and delaying.
- (5) Stop action the moment it leaves the right side of origin signal, output clear signal and delay if 'zero return CLR signal' is set.(CLR signal time delay in SFD can use 'zero return CLR signal' output point to clear Error Counter of servo), then copy mechanical origin position to the current position, zero return is finished.

➤ Before back to mechanical origin, the device is between left limit switch and origin switch, and start to decelerate when touch the origin rising edge, the speed reaches 0 before leaving origin signal right side:

Action description:

- (1) Accelerate to VH (zero return speed) with acceleration slope, and move in origin return direction at speed VH until touch the route limit switch.
- (2) Decelerate to 0 with deceleration slope when touch the route limit switch, then accelerate in origin return opposite direction until touch the origin switch, decelerate to 0 at set deceleration slope.
- (3) Accelerate to VC (crawl speed) with set acceleration slope. Three possible situations may occur as the acceleration and deceleration slope is different:
 - Stop by pulse at once, when accelerate to VC just the moment touching origin right side;
 - Move on to origin right edge at speed VC until leaves origin signal right edge, stop by pulse at once, if the speed reaches VC before touching the origin right edge;
 - Stop by pulse at once, if leaves origin right side before reaching speed VC;
- (4) Any situation in (3), stop action after stop by pulse, if 'zero return CLR signal' is set.(CLR signal time delay in SFD can use 'zero return CLR signal' output point to clear Error Counter of servo), then copy mechanical origin position to the current position, zero return is finished.

6-2-4. Pulse number immediate renovation [PLSMV]

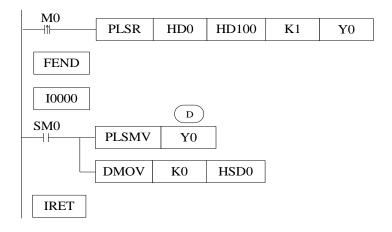
1. Summary

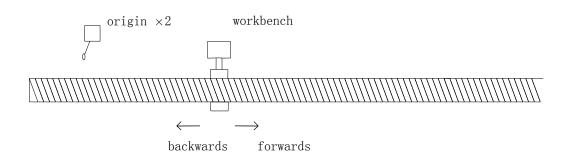
Instruction to renovate pulse number

Pulse number refr	esh [PLSMV]		
16 bit	-	32 bit	PLSMV
instruction		instruction	
Execution condition	Rising / falling edge trigger	Suitable model	XD3
Hardware requirement	-	Software requirement	-

2. operands

Operands	Function	Туре
D	Specify output terminal of refresh pulse	bit

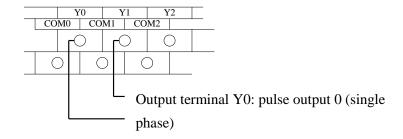

3. suitable soft component


Bit	operand				syste	em		
		X	Y	M*	S*	T*	C*	Dn.m
	D		•					

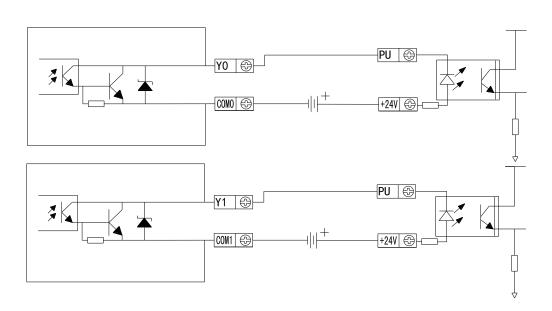
Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

Function and Action

- Every scan cycle RUNETC () accumulate renovation pulse number.
- Renovate pulse number immediately by PLSMV.
- Renovate accumulated pulse number and equivalent registers at the same time.



- Execute external interruption after getting origin signal X2 when workbench moves backwards, and PLSMV execute immediately, which is not affected by scanning time, renovate the accumulated number of output terminal Y0 immediately, assign value in interruption and send it to HSD0 (double word) and HSD2(double word).
- This above program can be used to eliminate accumulative error in pulse control.


Note: PLSMV is only suitable for PLSR; it is not suitable for other pulse instructions!

6-3. Output wiring

Below is the graph to show the output terminals and step driver wiring:

PLC side Stepping driver side

6-4. Relative coils and registers of pulse output

Some flags of pulse output are listed below:

ID	Function	Description	
SM1000	'sending pulse' flag	Being ON when sending the pulse	
SM1001	Direction flag	1 is positive direction, the corresponding direction port is ON	
SM1002	Overflow flag of accumulated pulse number	ON when overflow	PULSE_1
SM1003	Overflow flag of accumulated pulse equivalent	ON when overflow	
SM1010	Pulse error flag	ON when pulse error	
SM1020	'sending pulse' flag	Being ON when sending the pulse	
SM1021	Direction flag	1 is positive direction, the corresponding direction port is ON	
SM1022	Overflow flag of accumulated pulse number	ON when overflow	PULSE_2
SM1023	Overflow flag of accumulated pulse equivalent Pulse error flag	ON when overflow ON when pulse error	
	-		
SM1040	'sending pulse' flag	Being ON when sending the pulse 1 is positive direction, the corresponding direction port is ON	
SM1041	Direction flag Overflow flag of	OIN	PULSE_3
SM1042	accumulated pulse number	ON when overflow	
SM1043	Overflow flag of accumulated pulse equivalent	ON when overflow	

SM1050	Pulse error flag	ON when pulse error	
SM1060	'sending pulse' flag	Being ON when sending the pulse	
SM1061	Direction flag	1 is positive direction, the corresponding direction port is ON	
SM1062	Overflow flag of accumulated pulse number	ON when overflow	PULSE_4
SM1063	Overflow flag of accumulated pulse equivalent	ON when overflow	
SM1070	Pulse error flag	ON when pulse error	
SM1080	'sending pulse' flag	Being ON when sending the pulse	
SM1081	Direction flag	1 is positive direction, the corresponding direction port is ON	
SM1082	Overflow flag of accumulated pulse number	ON when overflow	PULSE_5
SM1083	Overflow flag of accumulated pulse equivalent	ON when overflow	
SM1090	Pulse error flag	ON when pulse error	
SM1100	'sending pulse' flag	Being ON when sending the pulse	
SM1101	Direction flag	1 is positive direction, the corresponding direction port is ON	
SM1102	Overflow flag of accumulated pulse number	ON when overflow	PULSE_6
SM1103	Overflow flag of accumulated pulse equivalent	ON when overflow	
SM1110	Pulse error flag	ON when pulse error	
SM1120	'sending pulse' flag	Being ON when sending the pulse	PULSE 7
SM1121	Direction flag	1 is positive direction, the corresponding direction port is	TOLDL_/

		ON	
SM1122	Overflow flag of accumulated pulse number	ON when overflow	
SM1123	Overflow flag of accumulated pulse equivalent	ON when overflow	
SM1130	Pulse error flag	ON when pulse error	
SM1140	'sending pulse' flag	Being ON when sending the pulse	
SM1141	Direction flag	1 is positive direction, the corresponding direction port is ON	
SM1142	Overflow flag of accumulated pulse number	ON when overflow	PULSE_8
SM1143	Overflow flag of accumulated pulse equivalent	ON when overflow	
SM1150	Pulse error flag	ON when pulse error	
SM1160	'sending pulse' flag	Being ON when sending the pulse	
SM1161	Direction flag	1 is positive direction, the corresponding direction port is ON	
SM1162	Overflow flag of accumulated pulse number	ON when overflow	PULSE_9
SM1163	Overflow flag of accumulated pulse equivalent	ON when overflow	
SM1170	Pulse error flag	ON when pulse error	
SM1180	'sending pulse' flag	Being ON when sending the pulse	
SM1181	Direction flag	1 is positive direction, the corresponding direction port is ON	PULSE_10
SM1182	Overflow flag of accumulated pulse number	ON when overflow	

SM1183	Overflow flag of accumulated pulse equivalent	ON when overflow	
SM1190	Pulse error flag	ON when pulse error	

Some special registers of pulse output are listed below:

ID	Function	Description	
SD1000	Current segment(No. n)		
SD1001			
SD1002	Low 16 bit of current pulse (unit is pulse number)		
SD1003	High 16 bit of current pulse (unit is pulse number)		
SD1004	Low 16 bit of current pulse (unit is pulse equivalent)		
SD1005	High 16 bit of current pulse (unit is pulse equivalent)		
SD1006	Low 16 bit of current output frequency (unit is pulse number)		PULSE 1
SD1007	High 16 bit of current output frequency (unit is pulse number)		
SD1008	Low 16 bit of current output frequency (unit is pulse equivalent)		
SD1009	High 16 bit of current output frequency (unit is pulse equivalent)		
SD1010	Pulse error message	1: pulse data block error 2: equivalent mode: pulse number/ turn, shift amount/turn is 0 3: system parameter block number error	

			1
		4: pulse data block exceed max limit	
		10: origin return do not set near point signal	
		11: origin return speed is 0	
		12: origin return crawling speed is 0	
		13: origin return speed and origin auxiliary speed direction is different	
SD1011	Error pulse data block number		
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
SD1020	Current segment(No. n)		
SD1021			
SD1022	Low 16 bit of current pulse (unit is pulse number)		
SD1023	High 16 bit of current pulse (unit is pulse number)		
SD1024	Low 16 bit of current pulse (unit is pulse equivalent)		
SD1025	High 16 bit of current pulse (unit is pulse equivalent)		
SD1026	Low 16 bit of current output frequency (unit is pulse number)		PULSE_2
SD1027	High 16 bit of current output frequency (unit is pulse number)		
SD1028	Low 16 bit of current output frequency (unit is pulse equivalent)		
SD1029	High 16 bit of current output frequency (unit is pulse equivalent)		
SD1030	Pulse error message	pulse data block error equivalent mode: pulse	
<u> </u>		2. equivalent mode, pulse	

		number/ turn, shift amount/turn is 0	
		3: system parameter block number error	
		4: pulse data block exceed max limit	
		10: origin return do not set near point signal	
		11: origin return speed is 0	
		12: origin return crawling speed is 0	
		13: origin return speed and origin auxiliary speed direction is different	
SD1031	Error pulse data block number		
SD1040	Current segment(No. n)		
SD1041			
SD1042	Low 16 bit of current pulse (unit is pulse number)		
SD1043	High 16 bit of current pulse (unit is pulse number)		
SD1044	Low 16 bit of current pulse (unit is pulse equivalent)		
SD1045	High 16 bit of current pulse (unit is pulse equivalent)		PULSE_3
SD1046	Low 16 bit of current output frequency (unit is pulse number)		
SD1047	High 16 bit of current output frequency (unit is pulse number)		
SD1048	Low 16 bit of current output frequency (unit is pulse equivalent)		
SD1049	High 16 bit of current output frequency (unit is pulse		

	equivalent)		
		1: pulse data block error	
		2: equivalent mode: pulse number/ turn, shift amount/turn is 0	
		3: system parameter block number error	
CD1050	Delegen	4: pulse data block exceed max limit	
SD1050	Pulse error message	10: origin return do not set near point signal	
		11: origin return speed is 0	
		12: origin return crawling speed is 0	
		13: origin return speed and origin auxiliary speed direction is different	
SD1051	Error pulse data block number		
SD1060	Current segment(No. n)		
SD1061			
SD1062	Low 16 bit of current pulse (unit is pulse number)		
SD1063	High 16 bit of current pulse (unit is pulse number)		
SD1064	Low 16 bit of current pulse (unit is pulse equivalent)		
SD1065	High 16 bit of current pulse (unit is pulse equivalent)		PULSE_4
SD1066	Low 16 bit of current output frequency (unit is pulse number)		
SD1067	High 16 bit of current output frequency (unit is pulse number)		
SD1068	Low 16 bit of current output frequency (unit is pulse		

	equivalent)		
SD1069	High 16 bit of current output frequency (unit is pulse equivalent)		
		1: pulse data block error 2: equivalent mode: pulse number/ turn, shift amount/turn is 0 3: system parameter block number error 4. pulse data block exceed may	
SD1070	Pulse error message	4: pulse data block exceed max limit10: origin return do not set near point signal	
		 11: origin return speed is 0 12: origin return crawling speed is 0 13: origin return speed and origin auxiliary speed direction is different 	
SD1071	Error pulse data block number		
SD1080	Current segment(No. n)		
SD1081			
SD1082	Low 16 bit of current pulse (unit is pulse number)		
SD1083	High 16 bit of current pulse (unit is pulse number)		
SD1084	Low 16 bit of current pulse (unit is pulse equivalent)		
SD1085	High 16 bit of current pulse (unit is pulse equivalent)		
SD1086	Low 16 bit of current output frequency (unit is pulse number)		
SD1087	High 16 bit of current output frequency (unit is pulse		PULSE_5

	number)		
SD1088	Low 16 bit of current output frequency (unit is pulse equivalent)		
SD1089	High 16 bit of current output frequency (unit is pulse equivalent)		
		1: pulse data block error	
		2: equivalent mode: pulse number/ turn, shift amount/turn is 0	
		3: system parameter block number error	
GD1000		4: pulse data block exceed max limit	
SD1090	Pulse error message	10: origin return do not set near point signal	
		11: origin return speed is 0	
		12: origin return crawling speed is 0	PULSE_6
		13: origin return speed and origin auxiliary speed direction is different	
SD1091	Error pulse data block number		
SD1100	Current segment(No. n)		
SD1101			
SD1102	Low 16 bit of current pulse (unit is pulse number)		
SD1103	High 16 bit of current pulse (unit is pulse number)		PULSE_6
SD1104	Low 16 bit of current pulse (unit is pulse equivalent)		
SD1105	High 16 bit of current pulse (unit is pulse equivalent)		
SD1106	Low 16 bit of current output frequency (unit is pulse		

	number)		
SD1107	High 16 bit of current output frequency (unit is pulse number)		
SD1108	Low 16 bit of current output frequency (unit is pulse equivalent)		
SD1109	High 16 bit of current output frequency (unit is pulse equivalent)		
SD1110	Pulse error message	 pulse data block error equivalent mode: pulse number/ turn, shift amount/turn is 0 system parameter block number error pulse data block exceed max limit origin return do not set near point signal origin return speed is 0 origin return crawling speed is 0 origin return speed and origin auxiliary speed direction is different 	
SD1111	Error pulse data block number		
SD1120	Current segment(No. n)		
SD1121			
SD1122	Low 16 bit of current pulse (unit is pulse number)		PULSE_7
SD1123	High 16 bit of current pulse (unit is pulse number)		
SD1124	Low 16 bit of current pulse (unit is pulse equivalent)		

SD1125	High 16 bit of current pulse (unit is pulse equivalent)		
SD1126	Low 16 bit of current output frequency (unit is pulse number)		
SD1127	High 16 bit of current output frequency (unit is pulse number)		
SD1128	Low 16 bit of current output frequency (unit is pulse equivalent)		
SD1129	High 16 bit of current output frequency (unit is pulse equivalent)		
		1: pulse data block error	
		2: equivalent mode: pulse number/ turn, shift amount/turn is 0	
		3: system parameter block number error	
SD1130	Pulse error message	4: pulse data block exceed max limit	
501130	Tuise error message	10: origin return do not set near point signal	
		11: origin return speed is 0	
		12: origin return crawling speed is 0	
		13: origin return speed and origin auxiliary speed direction is different	
SD1131	Error pulse data block number		
SD1140	Current segment(No. n)		
SD1141			
SD1142	Low 16 bit of current pulse (unit is pulse number)		
SD1143	High 16 bit of current pulse		PULSE_8

	(unit is pulse number)		
SD1144	Low 16 bit of current pulse (unit is pulse equivalent)		
SD1145	High 16 bit of current pulse (unit is pulse equivalent)		
SD1146	Low 16 bit of current output frequency (unit is pulse number)		
SD1147	High 16 bit of current output frequency (unit is pulse number)		
SD1148	Low 16 bit of current output frequency (unit is pulse equivalent)		
SD1149	High 16 bit of current output frequency (unit is pulse equivalent)		
SD1150	Pulse error message	1: pulse data block error 2: equivalent mode: pulse number/ turn, shift amount/turn is 0 3: system parameter block number error 4: pulse data block exceed max limit 10: origin return do not set near point signal 11: origin return speed is 0 12: origin return crawling speed is 0 13: origin return speed and origin auxiliary speed direction is different	
SD1151	Error pulse data block number		
SD1160	Current segment(No. n)		PULSE_9
SD1161			

	Low 16 bit of current pulse	
SD1162	(unit is pulse number)	
SD1163	High 16 bit of current pulse (unit is pulse number)	
SD1164	Low 16 bit of current pulse (unit is pulse equivalent)	
SD1165	High 16 bit of current pulse (unit is pulse equivalent)	
SD1166	Low 16 bit of current output frequency (unit is pulse number)	
SD1167	High 16 bit of current output frequency (unit is pulse number)	
SD1168	Low 16 bit of current output frequency (unit is pulse equivalent)	
SD1169	High 16 bit of current output frequency (unit is pulse equivalent)	
SD1170	Pulse error message	1: pulse data block error 2: equivalent mode: pulse number/ turn, shift amount/turn is 0 3: system parameter block number error 4: pulse data block exceed max limit 10: origin return do not set near point signal 11: origin return speed is 0 12: origin return crawling speed is 0 13: origin return speed and origin auxiliary speed direction is different
SD1171	Error pulse data block number	

SD1180	Current segment(No. n)		
SD1181			
SD1182	Low 16 bit of current pulse (unit is pulse number)		
SD1183	High 16 bit of current pulse (unit is pulse number)		
SD1184	Low 16 bit of current pulse (unit is pulse equivalent)		
SD1185	High 16 bit of current pulse (unit is pulse equivalent)		
SD1186	Low 16 bit of current output frequency (unit is pulse number)		
SD1187	High 16 bit of current output frequency (unit is pulse number)		
SD1188	Low 16 bit of current output frequency (unit is pulse equivalent)		PULSE- _10
SD1189	High 16 bit of current output frequency (unit is pulse equivalent)		
		1: pulse data block error	
		2: equivalent mode: pulse number/ turn, shift amount/turn is 0	
		3: system parameter block number error	
SD1190	Pulse error message	4: pulse data block exceed max limit	
		10: origin return do not set near point signal	
		11: origin return speed is 0	
		12: origin return crawling speed is 0	
		13: origin return speed and origin	

		auxiliary speed direction is different	
SD1191	Error pulse data block number		

High speed special data register HSD (power-loss memory)

Code	Function	Description	
HSD0	Low 16 bit of accumulated pulse number (unit is pulse number)		
HSD1	High 16 bit of accumulated pulse number (unit is pulse number)		
	Low 16 bit of accumulated pulse number (unit is pulse equivalent)		
	High 16 bit of accumulated pulse number (unit is pulse equivalent)		PULSE _1
HSD4	Low 16 bit of accumulated pulse number (unit is pulse number)		
HSD5	High 16 bit of accumulated pulse number (unit is pulse number)		
	Low 16 bit of accumulated pulse number (unit is pulse equivalent)		
	High 16 bit of accumulated pulse number (unit is pulse equivalent)		PULSE _2
HSD8	Low 16 bit of accumulated pulse number (unit is pulse number)		
HSD9	High 16 bit of accumulated pulse number (unit is pulse number)		
	Low 16 bit of accumulated pulse number (unit is pulse equivalent)		
	High 16 bit of accumulated pulse number (unit is pulse equivalent)		PULSE _3
HSD12	Low 16 bit of accumulated pulse number (unit is pulse number)		
HSD13	High 16 bit of accumulated pulse number (unit is pulse number)		
HSD14	Low 16 bit of accumulated pulse number (unit is pulse equivalent)		
	High 16 bit of accumulated pulse number (unit is pulse equivalent)		PULSE _4

HSD16	Low 16 bit of accumulated pulse number (unit is pulse number)	
HSD17	High 16 bit of accumulated pulse number (unit is pulse number)	
HSD18	Low 16 bit of accumulated pulse number (unit is pulse equivalent)	
HSD19	High 16 bit of accumulated pulse number (unit is pulse equivalent)	PULSE _5
HSD20	Low 16 bit of accumulated pulse number (unit is pulse number)	
HSD21	High 16 bit of accumulated pulse number (unit is pulse number)	
HSD22	Low 16 bit of accumulated pulse number (unit is pulse equivalent)	
HSD23	High 16 bit of accumulated pulse number (unit is pulse equivalent)	PULSE _6
HSD24	Low 16 bit of accumulated pulse number (unit is pulse number)	
HSD25	High 16 bit of accumulated pulse number (unit is pulse number)	
HSD26	Low 16 bit of accumulated pulse number (unit is pulse equivalent)	
HSD27	High 16 bit of accumulated pulse number (unit is pulse equivalent)	PULSE _7
HSD28	Low 16 bit of accumulated pulse number (unit is pulse number)	
HSD29	High 16 bit of accumulated pulse number (unit is pulse number)	
HSD30	Low 16 bit of accumulated pulse number (unit is pulse equivalent)	
HSD31	High 16 bit of accumulated pulse number (unit is pulse equivalent)	PULSE _8
HSD32	Low 16 bit of accumulated pulse number (unit is pulse number)	
HSD33	High 16 bit of accumulated pulse number (unit is pulse number)	
HSD34	Low 16 bit of accumulated pulse number (unit is pulse equivalent)	
HSD35	High 16 bit of accumulated pulse number (unit is pulse equivalent)	PULSE _9
HSD36	Low 16 bit of accumulated pulse number (unit is pulse number)	PULSE

HSD37	High 16 bit of accumulated pulse number (unit is pulse number)	_10
	Low 16 bit of accumulated pulse number (unit is pulse equivalent)	
	High 16 bit of accumulated pulse number (unit is pulse equivalent)	

7 Communication Function

This chapter mainly includes: basic concept of communication, Modbus communication;

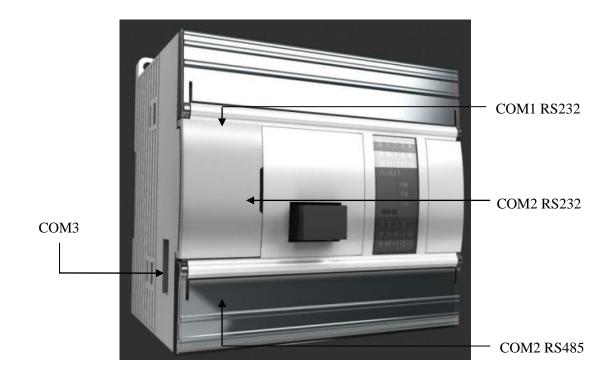
Relative Instruction

Mnemonic	Function	Circuit and soft components	Chapter
MODBUS C	ommunication	L	
COLR	Coil Read	COLR S1 S2 S3 D1 D2	7-2-3
INPR	Input coil read	INPR S1 S2 S3 D1 D2	7-2-3
COLW	Single coil write	COLW D1 D2 S1 S2	7-2-3
MCLW	Multi-coil write	MCLW D1 D2 D3 S1 S2	7-2-3
REGR	Register read	REGR S1 S2 S3 D1 D2	7-2-3
INRR	Input register read	INRR S1 S2 S3 D1 D2	7-2-3
REGW	Single register write	REGW D1 D2 S1 S2	7-2-3
MRGW	Multi-register write	MRGW D1 D2 D3 S1 S2	7-2-3

7-1. Summary

XD3 series PLC main units can fulfill your requirement on communication and network. They not only support Modbus RTU, but also support Modbus ASCII. XD3 series PLC offer multiple communication methods, with which you can communicate with the devices (such as printer, instruments etc.) that have Modbus communication protocol.

7-1-1. **COM port**


COM Port

XD3 series PLC have 2 COM ports (Port1, Port2)

COM 1 (Port1) is programming port, support RS232, and can be used to download the program and connect with the other devices. The parameters (baud rate, data bit etc) of this COM port can be set by software.

Note: If COM1 can't connect to PC successfully after parameters are changed, users can stop the PLC when start, and then initialize the PLC.

COM 2 (Port2) is communication port. It can be used to download program and connect with other devices. The parameters (baud rate, data bit etc), of this COM port can be changed by software. Port2 supports both RS232 and RS485 (RS485 is at output terminal, terminal A is 485+, terminal B is 485-). But these two ports cannot be used at the same time.

1. RS232 port

COM1 (Port1) Pin definition:

Mini Din 8 pin female port

2: PRG

4: RxD

5: TxD

6: VCC

8: GND

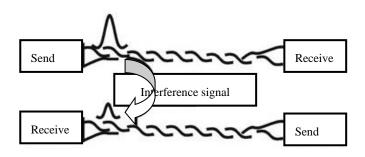
Mini Din 8 pin female port

COM2 (Port2) Pin definition:

4: RxD

5: TxD

8: GND


Note:

- 1. COM1 only supports RS232.
- 2. COM2 supports both RS232 and RS485, but RS232 and RS485 cannot be used at the same time.

2. RS485 port

About RS485 port, A is "+" signal. B is "-" signal.

The A, B terminals (RS485) on XD series PLC is the same port to Port 2. These two ports cannot be used at the same time. Please use twisted pair cable for RS485. (See below diagram). But shielded twisted pair cable is better and the single-ended connect to the ground.

7-1-2. Communication parameters

Communication Parameters

Station	Modbus station number: 1~254
Baud Rate	300bps~115.2Kbps
Data Bit	8 data bits, 7 data bits
Stop Bit	2 stop bits, 1 stop bit
Parity	Even, Odd, No check

The default parameters of COM1: Station number is 1, baud rate is 19200bps, 8 data bits, 1 stop bit, even parity.

Note: Do not modify COM1 parameters, otherwise connection between PLC and PC may fail!

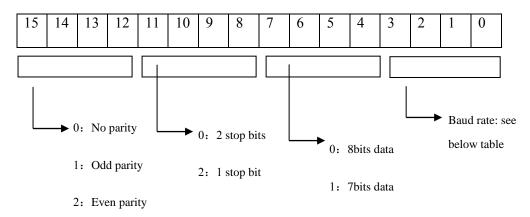
XD3 series PLC can set the parameters by the COM ports.

COM1	Function	Description	Note
SFD600*	Communication mode		See value of corresponding bit
SFD601*	Communication format	Baud rate, data bit, stop bit, parity	See value of corresponding bit
SFD602*	Frame timeout judgment time	Unit: character	High 8 bits invalid
SFD603*	Reply timeout judgment time		High 8 bits invalid
SFD604	Delay time before sending		Unit: ms
COM2			
SFD610*	Communication mode		See value of corresponding bit
SFD611*	Communication format	Baud rate, data bit, stop bit, parity	See value of corresponding bit
SFD612*	Frame timeout judgment time		Unit: ms
SFD613*	Reply timeout judgment time		Unit: ms, if set to be 0, it means no timeout wait
SFD614	delay time before sending		Unit: ms

• Timeout:

- Frame timeout judgment set to be 0: then wait for time of a character, and it means over if timeout; 8bit unsigned number.
- Reply timeout judgment set to be 0: no timeout; 16bits unsigned number.
- > Delay time before sending set to be 0: no delay; 16bits unsigned number.

• Value of corresponding bit in SFD600, SFD610

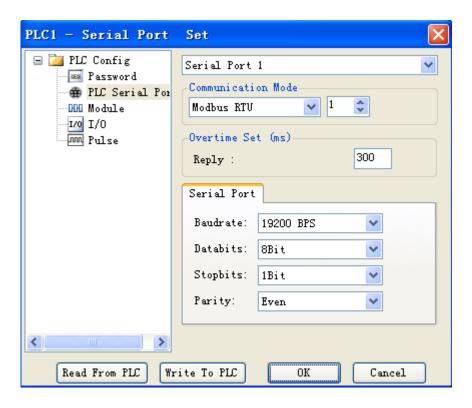

Bit	Value
0~7: Modbus station No	Modbus station No
8~15: communication	0: modbus RTU mode (default)
mode	1: modbus ASCII mode

• Value of corresponding bit in SFD601, SFD611

<u>_</u>	, , , , , , , , , , , , , , , , , , ,		
Bit		Value	
0~1: Buffer bits	0x0, 8bits	0x1, 16bits	
2: Start symbol	0x0, no start symbol	0x1, start	
		symbol	
3: End symbol	0x0, no end symbol	0x1, end symbol	
4~7: extra	0x0, no extra parity	0x1, and parity	0x2, CRC parity
communication			
parity			
. ,			
8~15: Reserved			

XD3 series communication parameters

SFD601 (COM1) / SFD611 (COM2):



bit0~bit3 baud rate:

Bit	Value				
	0x0, BaudRate600	0x1, BaudRate1200	0x2, BaudRate2400		
	0x3, BaudRate4800	0x4, BaudRate9600	0x5, BaudRate19200		
0~3: baud rate	0x6, BaudRate38400	0x7, BaudRate57600	0x8, BaudRate115200		
	0x9,BaudRate192000	0xA,BaudRate25600 0	0xB,BaudRate28800 0		

	0xC,BaudRate38400	0xD,BaudRate51200 0	0xE,BaudRate576000
	0xF, BaudRate768000		
4~7: data bit	0x0, 8bits	0x1, 7bits	
8~11: stop bit	0x0, 2bits		0x2, 1bit
12~15: odd and even parity	0x0, none	0x1, odd parity	0x2, even parity

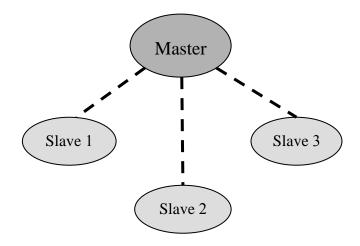
Note: Users don't have to modify each communication parameter by SFD separately. It is much more convenient to modify parameters by XDPPro in integration. See graph as below:

For XC series PLC, modify parameters in PC, and the parameters work only after restarting; For XD3 series PLC, COM parameters work immediately after modifying.

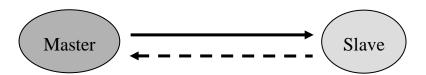
7-2. MODBUS communication

7-2-1. Function

XD3 series PLC support both Modbus master and Modbus slave.


Master mode: When PLC is set to be master, it can communicate with other slave devices which have MODBUS-RTU or MODBUS-ASCII protocol via Modbus instructions; it also can change data with other devices.

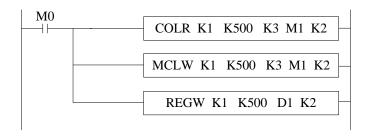
For example: Xinje XD3 series PLC can control inverter by Modbus.


Slave mode: When PLC is set to be slave, it can only response with other master devices.

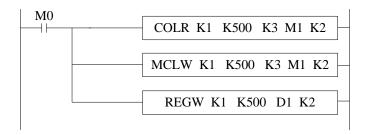
Master and slave: In RS485 network, there can be one master and several slaves at one time (see below diagram). The master station can read and write any slave station.

Two slave stations cannot communicate with each other. Master station should write program and read or write one slave station; slave station has no program but only response the master station. (Wiring: connect all 485+, connect all 485-)

In RS232 network (see below diagram), there can only be one master and one slave at one time.


There is dotted line in the diagram. It means any PLC can be master station when all PLC in the network don't send data. As the PLC do not have unified clock standard, communication will fail when more than one PLC send data at one time. It is not recommended to use.

Note:


- 1. For XD3 series PLC, RS232 and RS485 only support half-duplex.
- 2. For XC series PLC, if master PLC send one data to slave PLC, and master PLC send data again before slave PLC receiving the last one completely, slave PLC end data error may occur; For XD3 series PLC, we solve this problem by adding waiting time before communication (COM1/COM2: SFD1337/SFD1347), which means the slave PLC will receive the next data only after some time the last data finished.

7-2-2. Change of Modbus handling mode

Modbus instruction handling mode has changed, users can write Modbus instructions directly in program, the protocol station will queue up Modbus requests, which is not the same task with communication; It means users can use one triggering condition to trigger multiple Modbus instructions at the same time. PLC will queue up Modbus requests according to protocol station, which will lead to communication error in XC series PLC.

XC series (x)

XD3 series $(\sqrt{})$

Note: XD3 series PLC sequence block has cancelled Modbus communication instructions, which is replaced by the current Modbus instruction handling mode.

7-2-3. Address

The soft component's code in PLC corresponds with Modbus ID number, please see the following table:

Tuno	Comp	Number	code	Modbus ID	Modbus ID
Туре	symbol	Number	code	(Hex. H)	(Decimal K)
		64	X0~77 (Noumenon)	5000~5063	20480~20579
Bit	X	640	X10000~10077 (#1 expansion module) X10900~10977 (#1 expansion module)	5100~54C3 (see below table)	20736~21699 (see below table)
		192	X20000~20077 (#1 BD) X20200~20277 (#3 BD)	58D0~59D7 (see below table)	22736~22799 (see below table)
	Y	64	Y0~77 (Noumenon)	6000~6063	24576~24675

			Y10000~10077		
		640	(#1 expansion module) Y10900~10977 (#10 expansion module)	6100~64C3 (see below table)	24832~25795 (see below table)
		192	Y20000~20077 (#1 BD) Y20200~20277 (#3 BD)	68D0~69D7 (see below table)	26832~27095 (see below table)
	M	8000	M0~M7999	0~1F3F	0~7999
	S	1024	S0~S1023	7000~73FF	28672~29695
	SEM	32	SE0~SE31	C080~C09F	49280~49311
	SM	2048	SM0~SM2047	9000~97FF	36864~38911
	T	576	T0~T575	A000~A23F	40960~41535
	ET	32	ET0~ET31	C000~C01F	49152~49183
	С	576	C0~C575	B000~B23F	45056~45631
	НМ	960	HM0~HM959	C100~C4BF	49408~50367
	HS	128	HS0~HS127	D900~D97F	55552~55679
	HT	96	HT0~HT95	E100~E15F	57600~57695
	НС	96	HC0~HC95	E500~E55F	58624~58719
	HSC	32	HSC0~HSC31	E900~E91F	59648~59679
	D	8000	D0~D7999	0000~1F3F	0~7999
RAM	TD	576	TD0~TD575	8000~823F	32768~33343
I KAWI	ETD	32	ETD0~ETD31	A000~A01F	40960~40991
	CD	576	CD0~CD575	9000~923F	36864~37439

Word	SD	4K	SD0~SD4095	7000~77FF	28672~30719
		100	ID0~99 (Noumenon)	5000~5063	20480~20579
	ID	1000	ID10000∼10099 (#1 expansion module) ID10900∼10999 (#10 expansion module)	5100~54E7 (see below table)	20736~21735 (see below table)
		300	ID20000~20099 (#1 BD) ID20200~20299 (#3 BD)	58D0~59FB (see below table)	22736~23035 (see below table)
		100	QD0~99 (Noumenon)	6000~6063	24576~24675
	QD	1000	QD10000~10099 (#1 expansion module) QD10900~10999 (#10 expansion module)	6100~54E7 (see below table)	24832~25831 (see below table)
	3	300	QD20000~20099 (#1BD) QD20200~20299	68D0~59FB (see below table)	26832~27131 (see below table)

				(#3 BD)		
		HD	1000	HD0~HD999	A080~A467	41088~42087
		HTD	96	HTD0~HTD95	BC80~BCDF	48256~48351
		HCD	96	HCD0~HCD95	C080~C0DF	49280~49375
		HSCD	32	HSCD0~HSCD31	C480~C49F	50304~50335
		HSD	500	HSD0~HSD499	B880~BA73	47232~47731
	FLASH	FD	6144	FD0~FD6143	C4C0~DCBF	50368~56511
		SFD	2000	SFD0~SFD1999	E4C0~EC8F	58560~60559
		FS	48	FS0~FS47	F4C0~F4EF	62656~62703
Syste	m object					

Expansion module and BD card I/O modbus communication address:

Soft			Modbus ID	Modbus ID
comp Number	Code	(Hex. H)	(Decimal K)	
		X10000~10077 (#1 module)	5100~513F	20736~20799
		X10100~10177 (#2 module)	5164~51A3	20836~20899
		X10200~10277 (#3 module)	51C8~5207	20936~20999
X	640	X10300~10377 (#4 module)	5522C~526B	21036~21099
		X10400~10477 (#5 module)	5290~52CF	21136~21199
		X10500~10577 (#6 module)	52F4~5333	21236~21299
		X10600~10677(#7	5358~5397	21336~21399

		module)		
		X10700~10777 (#8 module)	53BC~53FB	21436~21499
		X10800~10877 (#9 module)	5420~545F	21536~21599
		X10900~10977 (#10 module)	5484~54C3	21636~21699
		X20000~20077 (#1BD)	58D0~590F	22736~22799
	192	X20100~20177 (#2BD)	5934~5973	22836~22899
		X20200~20277 (#3BD)	5998~59D7	22936~22999
		Y10000~10077 (#1 module)	6100~613F	24832~24895
	640	Y10100~10177 (#2 module)	6164~61A3	24932~24995
		Y10200~10277 (#3 module)	61C8~6207	25032~25095
		Y10300~10377 (#4 module)	6522C~626B	25132~25195
Y		Y10400~10477 (#5 module)	6290~62CF	25232~25295
		Y10500~10577 (#6 module)	62F4~6333	25332~25395
		Y10600~10677 (#7 module)	6358~6397	25432~25495
		Y10700~10777 (#8 module)	63BC~63FB	25532~25595
		Y10800~10877 (#9 module)	6420~645F	25632~25695
		Y10900~10977 (#10 module)	6484~64C3	25732~25795

	Y20000~20077 (#1BD)	68D0~690F	26832~26895
192	Y20100~20177 (#2BD)	6934~6973	26932~27995
	Y20200~20277 (#3BD)	6998~69D7	27032~27095

Expansion module and BD card AD/DA Modbus communication address:

Soft		G 1	Modbus ID	Modbus ID
comp	Number	Code	(Hex. H)	(Decimal K)
		ID10000~10099 (#1 module)	5100~5163	20736~20835
		ID10100~10199 (#2 module)	5164~51C7	20836~20935
		ID10200~10299 (#3 module)	51C8~522B	20936~21035
		ID10300~10399 (#4 module)	5522C~528F	21036~21135
	1000	ID10400~10499 (#5 module)	5290~52F3	21136~21235
AD	1000	ID10500~10599 (#6 module)	52F4~5357	21236~21335
		ID10600~10699 (#7 module)	5358~53BB	21336~21435
		ID10700~10799 (#8 module)	53BC~541F	21436~21535
		ID10800~10899 (#9 module)	5420~5483	21536~21635
		ID10900~10999 (#10 module)	5484~54E7	21636~21735
	300	ID20000~20099 (#1BD)	58D0~5933	22736~22835
	300	ID20100~20199 (#2BD)	5934~5997	22836~22935

		ID20200~20299 (#3BD)	5998~59FB	22936~23035
		QD10000~10099 (#1 module)	6100~6163	24832~24931
		QD10100~10199 (#2 module)	6164~61C7	24932~25031
		QD10200~10299 (#3 module)	61C8~622B	25032~25131
		QD10300~10399 (#4 module)	6522C~628F	25132~25231
	1000	QD10400~10499 (#5 module)	6290~62F3	25232~25331
DA	1000	QD10500~10599 (#6 module)	62F4~6357	25332~25431
		QD10600~10699 (#7 module)	6358~63BB	25432~25531
		QD10700~10799 (#8 module)	63BC~641F	25532~25631
		QD10800~10899 (#9 module)	6420~6483	25632~25731
		QD10900~10999 (#10 module)	6484~64E7	25732~25831
		QD20000~20099 (#1BD)	68D0~6933	26832~26931
	300	QD20100~20199 (#2BD)	6934~6997	26932~27031
		QD20200~20299 (#3BD)	6998~69FB	27032~27131

- The address is usually for Modbus-RTU and Modbus-ASCII communication when PLC works as lower computer, and upper computer: configuration/screen/PLC......
- If upper computer is PLC, then we write program according to Modbus-RTU or Modbus-ASCII protocol; if upper computer is configuration or touch screen, there will be two situations: 1. with xinje driver. E.g.: xinje touch screen/ Real bridge configuration can use PLC soft components directly (Y0/M0). 2. without xinje driver. Then users have to use below address to define variables after select Modbus-RTU or Modbus-ASCII protocol.

For Octonary I/O, calculate corresponding octonary I/O Modbus address.

7-2-4 Modbus data format

Modbus transmission mode:

There are two transmission modes: RTU and ASCII; It defines serial transmission of bit content in message domain; it decides how information to pack and decode; transmission mode (and port parameters) of all devices in Modbus serial links should be the same.

• Modbus-RTU data structure

1. RTU mode:

Under Modbus RTU (remote terminal unit) mode, message has two 4-bit hexadecimal characters in every 8-bit byte. This mode has very high data density, higher throughput rate than Modbus ASCII. Every message should be sent by continuous characters.

RTU mode frame check domain: cycle redundancy check (CRC) .

RTU mode frame description:

Modbus	Function	data	CI	RC
station	code			
4.1		0.0501	2 b	yte
1 byte	1 byte	0~252 byte	CRC high	CRC low

Format:

START	No input signal ≥ 10ms
Address (station)	Communication address: 8-bit binary
Function	Function code: 8-bit binary
DATA (n - 1)	Data content:
	N*8-bit data, N<=8, max 8 bytes
DATA 0	
CRC CHK Low	CRC check code

CRC CHK High	16-bit CRC check code is consist of two 8- bit binary
END	No input signal ≥ 10ms

2. Modbus address:

00H: All the Xinje XC series PLC broadcast—— slave stations don't response.

01H: Communicate with address 01H PLC.

0FH: Communicate with address 15H PLC.

10H: Communicate with address 16H PLC and so on. Up to 254 (FEH) .

2. Function and DATA:

Function code	Function	Modbus instruction
01H	Read coil	COLR
02H	Read input coil	INRR
03H	Read register	REGR
04H	Read input register	INRR
05H	Write coil	COLW
06H	Write register	REGW
10H	Write multi-register	MRGW
0FH	Write multi-coil	MCLW

Take 06H function code as example (single register write), and introduce data format (other function code is similar to this):

E.g.: upper computer write data to PLC H0002 (D2).

RTU mode:


Asking format		Response format	
ID	01H	ID	01H
Function code	06H	Function code	06H

Register ID	00H	Register ID	00Н
	02H		02H
Data content	13H	Data contents	13H
	88H		88H
CRC CHECK High	25H	CRC CHECK High	25H
CRC CHECK Low	5CH	CRC CHECK Low	5CH

Explanation:

- 1. Address is PLC station no.
- 2. Function code is Modbus-RTU protocol read/write code.
- 3. Register address is the PLC modbus address, please see chapter 7-2-2.
- 4. Data content is the value in D2.
- 5. CRC CHECK High / CRC CHECK Low is high and low bit of CRC check value.

If 2 pieces of Xinje XD3 series PLC communicate with each other, write K5000 to D2.

M0 is trigger condition (Rising edge). If communication fails, the instruction will try twice. If the third time communication fails, then communication ends.

The relationship between REGW and Modbus RTU protocol (other instructions are the same)

REGW	Function code 06H
K1	Station no.
H0002	Modbus address
K5000	Data contents 1388H
K2	PLC serial port

The complete communication datum are: 01H 06H 00H 02H 13H 88H (system take CRC checking automatically)

If monitor the serial port2 data by serial port debugging tool, the datum are: 01 06 00 02 13 88 25 5C

Note: The instruction doesn't distinguish decimal, hex, binary, octal etc. For example, B10000, K16 and H10 are the same value, so the following instructions are the same.

REGW K1 B111110100 D1 K2

REGW K1 K500 D1 K2

REGW K1 H1F4 D1 K2

Modbus-ASCII data structure

1. ASCII mode:

For Modbus ASCII (American Standard Code for Information Interchange) mode in serial links, every 8-bit byte is sent as two ASCII characters. When communication links and devices do not fit RTU mode timing monitor, we usually use the ASCII mode.

Note: One byte needs two characters, so ASCII mode has lower inefficiency than RTU mode.

E.g.: Byte 0X5B will be encoded as two characters: 0x35 and 0x42 (ASCII code 0x35 = 5, 0x42 = B).

ASCII mode frame check domain: Longitudinal Redundancy Checking (LRC)

ASCII mode frame description:

Start mark	Modbus no.	Function code	data	LRC	End m	ark
1 character	2 characters	2 characters	0~252*2	2 characters	2 chara	acters
0x3A			characters		0x0D	0x0A

Format:

STX (3AH)	Start mark=3AH	
Address code high bit	Communication position (no):	
Address code low bit	Consist of 2 ASCII codes	
Function code high bit	Function code (command):	
Function code low bit	Consist of 2 ASCII codes	
Instruction start ID		
	Command start bit:	
Instruction start ID		
	Consist of 4 ASCII codes	
Instruction start ID		

Instruction start ID	
Data length	
Data length	Length from start to end:
Data length	Consist of 4 ASCII codes
Data length	
LRC check high bit	LRC check code:
LRC check low bit	Consist of 2 ASCII codes
END high bit	End mark:
END low bit	END Hi=CR (0DH), END Lo=CR (0AH)

2. Communication address:

00H: All Xinje XC series PLC broadcast—— slave stations do not response.

01H: Communicate with address 01H PLC.

0FH: Communicate with address 15H PLC.

10H: Communicate with address 16H PLC.

And so on, up to 254 (FEH) .

3. Function and DATA:

Function code	Function	Corresponding modbus
01H	Read coil	COLR
02H	Read input coil	INRR
03H	Read register	REGR
04H	Read input register	INRR
05H	Write single coil	COLW
06H	Write single register	REGW
10H	Write multiple registers	MRGW

0FH	Write multiple coils	MCLW

Take 06H function code (write single register) as example, and introduce data format (other functions are the similar to this):

E.g.: upper computer write data to PLC H0002 (D2).

ASCII mode:

Start mark	ЗАН
ID	30Н
	31H
	30H
	36Н
Register ID high byte	30H
	30H
Register ID low byte	30H
	32H
Data content high byte	31H
	33Н
Data content low byte	38H
	38H
LRC	35H
	43H
End mark	0DH
	0AH

Description:

- 1. ID is PLC station number.
- 2. Function code is Modbus-ASCII protocol read/write code.
- 3. Register ID is the PLC modbus communication ID, please see chapter 7-2-2.
- 4. Data content is the value in D2.
- 5. LRC CHECK Low / CRC CHECK High is low and high bit of CRC check value.

If two pieces of Xinje XD3 PLC communicate with each other, write K5000 to D2.

M0 is trigger condition (rising edge). When Xinje PLC communicates by Modbus, if communication fails, the instruction will try twice. If the third time communication fails, then communication ends.

The relationship between REGW and ASCII protocol (other instructions are similar to this):

REGW	Function code 06H
K1	Station number
H0002	Modbus ID
K5000	Data content is 1388H
K2	PLC communication serial port

Complete data string: 3AH 30H 31H 30H 36H 30H 30H 30H 31H 33H 38H 38H 35H 43H (system take CRC checking automatically)

If monitor the serial port2 by serial port debugging tool, the datum are: 3AH 30H 31H 30H 36H 30H 30H 30H 31H 33H 38H 38H 35H 43H 0DH 0AH

Note: The data does not distinguish decimal, binary, hexadecimal etc. For example, B10000, K16 and H10 are the same value, so the following instructions are the same.

REGW K1 B1111110100 D1 K2

REGW K1 K500 D1 K2

REGW K1 H1F4 D1 K2

7-2-5. Communication Instructions

Modbus instructions include coil read/write, register read/write; below, we describe these instructions in details:

The operand definition in the instruction:

1. Remote communication station and serial port number.

E.g.: one PLC connects 3 inverters. PLC needs to write and read the parameters of inverter. The inverter station number is 1.2 and 3. So the remote communication number is 1.2 and 3.

2. Remote register/coil start ID number:

Assign remote coil/register number: the start coil/register ID of PLC read and write, it is normally used with 'assigned coil/register number'.

E.g.: PLC read Xinje inverter's output frequency (H2103), output current (H2104), bus voltage (H2105), then remote register/coil start ID is H2103, assigned coil number is K3.

3. Local receipt/send coil/register address: Coil/register in PLC used to exchange data with lower computer.

E.g.: write coil M0: write M0 status to assigned address in lower computer

Write register D0: write D0 value to assigned address

Read coil M1: read content in lower computer assigned address to M1

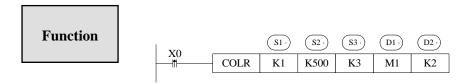
Read register D1: read content in lower computer assigned address to D1

Coil Read [COLR]

1. Instruction Summary

Read the specified station's specified coil status to the local PLC;

Coil read [COLR]			
16 bits	COLR	32 bits	-
instruction		instruction	
Execution condition	Normally ON/OFF coil	Suitable models	XD3
Hardware requirement	-	Software Requirement	-


2. Operands

Operands	Function	Туре
S1	Specify the remote communication station	16 bits, BIN
S2	Specify the remote coil start address	16 bits, BIN
S3	Specify the coil quantity	16 bits, BIN
D1	Specify the local coil start address	bits
D2	Specify the serial port no.	16 bits, BIN

3. Suitable soft components

Word	Operands		·							Constant	Мо	dule	
		D*	FD	TD	* (CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•		•	•	•				•		
	S2	•	•		•	•	•				•		
	S3	•	•		1	•	•				•		
	Operands			,	Syste	em							
Bit		X	Y	M*	S*	T*	C*	Dn.m					
	D1	•	•	•	•	•	•						

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM. M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

- Instruction to read coil, Modbus function code 01H.
- ➤ Serial port: K1~K3.
- ➤ Operands S3: K1~K984, the max coil quantity is 984.

Input coil read [INPR]

1. Summary

Write input coils status in specified station to the local station.

Input coil read	[INPR]		
16 bits	INPR	32 bits	-
instruction		instruction	
Execution	Normally ON/OFF, rising	Suitable	XD3
condition	edge	models	
Hardware	-	Software	-
requirement		requirement	

2. Operands


Operands	Function	Туре
S1	Specify remote communication no.	16 bits, BIN
S2	Specify remote coil start address number	16 bits, BIN

S3	Specify coil number	16 bits, BIN
D1	Specify start address number of local receipt coils	bit
D2	Specify serial port number	16 bits, BIN

3. Suitable soft components

Word	Operands		System O* FD TD* CD* DX DY DM* DS*								Constant	Мо	dule
		D*	FD	TD*	• (D*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•		•	•	•				•		
	S2	•	•		•	•	•				•		
	S3	•	•		•	•	•				•		
	D2										K		
				1									
	Operands			Ş	Syste	em							
		X	Y	M*	S*	T*	C*	Dn.m					
Bit	D1	•	•	•	•	•	•		1				

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

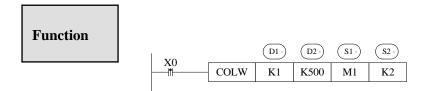
- ➤ Instruction to read input coil, Modbus function code is 02H.
- ➤ Serial port: K1~K3.
- ➤ Operand S3: K1~K984, max input coil number is 984.
- ➤ When X0 is ON, then execute COLR or INPR instruction, set communication end flag after executing the instruction; When X0 is OFF, no operation. If communication errors, it will resend automatically. If the third time communication fails, then error flag forms. Users can check the relative registers to find the reason.

Coil Write [COLW]

1. Summary

Write input coils status in specified station to the local station.

Coil write [CC	DLW]		
16 bits instruction	COLW	32 bits instruction	-
Execution Condition	Normally ON/OFF、rising edge	Suitable Models	XD3
Hardware Requirement	-	Software Requirement	-


2. Operands

Operands	Function	Туре
D1	Specify remote communication number	16 bits, BIN
D2	Specify remote coil start address number	16 bits, BIN
S1	Specify start address number of local send coil	bit
S2	Specify serial port number	16 bits, BIN

3. Suitable soft components

<i>3.</i> Bt	ultable sol	COI	троп	21103									
Word	Operands		System							Constant	Mo	dule	
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	D1	•	•		•	•				•			
	D2	•	•		•	•				•			
	S2									K			
		<u> </u>	<u> </u>										
	Operand			Sy	stem								
		X	Y	1* S	* T*	C*	Dn.m						
Bit	S1	•	• •	•	•	•							
								J					

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

- Instruction to write coil, Modbus function code is 05H.
- ➤ Serial port: K1~K3.

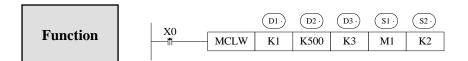
Multi-coils write [MCLW]

1. Summary

Write input coils status in the local station to the specified station.

Multi-coils write [MCLW]				
16 bits	MCLW	32 bits	-	
instruction		instruction		
Execution	Normally ON/OFF, rising	Suitable	XD3	
Condition	edge	models		
Hardware	-	Software	-	
Requirement		Requirement		

2. Operands


Operands	Function	Туре
D1	Specify remote communication number	16 bits, BIN
D2	Specify remote coil start address number	16 bits, BIN
D3	Specify coil number	16 bits, BIN

S1	Specify start address number of local send coils	bit
S2	Specify serial port number	16 bits, BIN

3. Suitable soft components

Word	Operands				System						Constant	Module		
		D*	FD	TD*	. (D*	DX	DY	DM*	DS*	K/H	ID	QD	
	D1	•	•	•	•)					•			
	D2	•	•	•	•	,					•			
	D3	•	•	•	•	,					•			
	S2										K			
		l		1		[<u> </u>		ı	l	1	l	
	Operands			S	yste	em								
		X	Y	M*	S*	T*	C*	Dn.m						
Bit	S1	•	•	•	•	•	•							

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

- Instruction to write multi-coils, Modbus function code is 0FH.
- Serial port: K1~K3.
- Operand D3, the max coils max quantity is 952.
- ➤ When X0 is ON, execute COLW or MCLW instruction, set communication end flag after finishing the instruction; When X0 is OFF, no operation. If communication errors, it will resend automatically. The third time communication fails, then error flag forms. Users can check the relative registers to find the error reason.

Register read [REGR]

1. Summary

Write registers content in the specified station to the local station.

Register read[I	REGR]		
16 bits	REGR	32 bits	-
instruction		instruction	
Execution	Normally ON/OFF, rising	Suitable	XD3
Condition	edge	models	
Hardware	-	Software	-
Requirement		Requirement	

2. Operands

Operands	Function	Туре
S1	Specify remote communication number	16 bits, BIN
S2	Specify remote register start address number	16 bits, BIN
S3	Specify register number	16 bits, BIN
D1	Specify start address number of local receipt register	16 bits, BIN
D2	Specify serial port number	16 bits, BIN

3. Suitable soft components

Word	Operands				Sy	stem		Constant	Mo	dule			
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	S1	•	•	•	•					•			
	S2	•		•	•					•			
	S3	•	•	•	•					•			
	D1	•											
	D2									K			

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

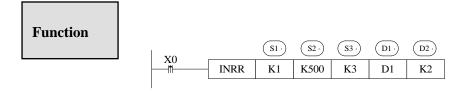
- ➤ Instruction to read register, Modbus function code is 03H.
- ➤ Serial port : K1~K3
- > Operand S3 and max register number is 61.

Input register read [INRR]

1. Summary

Write input register content in specified number to the local register.

Input register i	read [INRR]		
16 bits instruction	INRR	32 bits instruction	-
Execution	Normally ON/OFF, rising	Suitable	XD3
Condition	edge	models	ADS
Hardware Requirement	-	Software Requirement	-
•		1	


2. Operands

Operands	Function	Туре
S1	Specify remote communication number	16 bits, BIN
S2	Specify remote register start address number	16 bits, BIN
S3	Specify coil number	16 bits, BIN
D1	Specify start address number of local receipt register	16 bits, BIN
D2	Specify serial port number	16 bits, BIN

3. suitable soft components

Word	Operands		System Constant										
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD	
	S1	•	•	•	•					•			
	S2	•	•	•	•					•			
	S3	•	•	•	•					•			
	D1	•											
	D2									K			

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

- Instruction to read input register, Modbus function code is 04H.
- ➤ Serial port : K1~K3.
- Operand S3, the max input register number is 61.
- ➤ When X0 is ON, execute REGR or INRR instruction, set communication end flag after executing the instruction; When X0 is OFF, no operation. If communication errors, it will resend automatically. If the forth communication fails, then communication error flag forms. Users can check relative registers to find the reasons.

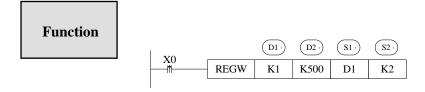
Register write [REGW]

1. summary

Write register content in local station to the specified station.

Register write	[REGW]		
16 bits	REGW	32 bits	-
instruction		instruction	
Execution Condition	Normally ON/OFF, rising edge	Suitable models	XD3

Hardware	-	Software	-
Requirement		Requirement	


2. Operands

Operands	Function	Туре
D1	Specify remote communication number	16 bits, BIN
D2	Specify remote register start address number	16 bits, BIN
S1	Specify start address number of local send register	16 bits, BIN
S2	Specify serial port number	16 bits, BIN

3. suitable soft components

Word	Operands				Sy	stem				Constant	Мо	dule	
		D	FD	TD	CD	DX	DY	DM	DS	K/H	ID	QD	
	D1	•	•	•	•					•			
	D2	•	•	•	•					•			
	S1	•											
	S2									K			
		ı				I			I			1	

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

- ➤ Instruction to write register, Modbus function code is 06H.
- ➤ Serial port: K1~K3.

Multi-register write [MRGW]

1. Summary

Write register content in local station to the specified register.

Multi-register write [MRGW]					
16 bits	MRGW	32 bits	-		
instruction		instruction			
Execution Condition	Normally ON/OFF, rising edge	Suitable models	XD3		
Hardware Requirement	-	Software Requirement	-		

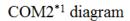
2. Operands

Operands	Function	Туре
D1	Specify remote communication number	16 bits, BIN
D2	Specify remote register start address number	16 bits, BIN
D3	Specify register number	16 bits, BIN
S1	Specify start address number of local send registers	16 bits, BIN
S2	Specify serial port number	16 bits, BIN

3. suitable soft components

Word	Operands				Sy	stem				Constant	Mo	dule
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	D1	•	•	•	•					•		
	D2	•	•	•	•					•		
	S1	•										
	S2									K		

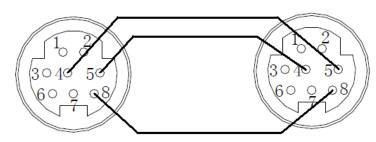
Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.


- Instruction to write multi-registers, Modbus function code is 10H.
- ➤ Serial port: K1~K3.
- > Operand D3, the max register quantity is 59.
- ➤ When X0 is ON, execute REGW or MRGW instruction, set communication end flag after executing the instruction; When X0 is OFF, no operation. If communication fails, it will resend automatically. If the third communication fails, communication error flag forms. Users can check relative registers to find the error reason.

7-2-6. Communication application

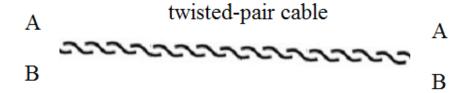
• Wiring method

There are two wiring methods:


A. 232 wiring methods

5: TxD

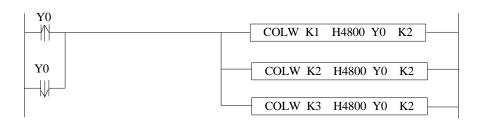
8: GND



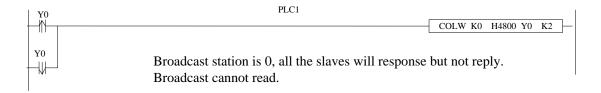
Mini Din 8 Pins port

Note:

- 1. COM2 with *1 only show the RS232 pins. The RS485 pins are external terminal (A, B).
- 2. XD3 series PLC, RS232 do not support full-duplex, so it can only communicate in single direction.
- 3. RS232 communication distance is short (about 13m); RS485 is suitable for longer distance.


B. 485 wiring methods

Connect all A terminals, connect all B terminals. A is RS485+, B is RS485-.


Application: One xinje XD3 series PLC control 3 PLCs, slave PLCs follow the master's action. (Master PLC Y0 ON, then slave PLC Y0 ON; Master PLC Y0 OFF, then slave PLC Y0 OFF) Precondition: on-off of Y0 makes communication have enough time to react. Also three slave PLCs can be not that synchronous (not fully synchronous).

Method 1 usual program

The program takes serial port 2 as example, so corresponding communication flag is the serial port 2's. About other serial port, please refer to appendix 1. Serial port, please refer to appendix 1.

Method 2 use broadcasting function:

When master Y0 status changes, it broadcasts the status to all the slaves. The synchronization of three PLCs is better than method 1.

8 PID Control Function

In this chapter, we mainly introduce the applications of PID instructions for XD series, including: call the instructions, set the parameters, items to notice, sample programs etc.

8-1. Brief Introductions of the Functions

PID instruction and auto tune function are added into XC series PLC basic units. Via auto tune method, users can get the best sampling time and PID parameters and improve the control precision.

PID instruction has brought many facilities to the users.

- ➤ Output can be data form D, HD, and on-off quantity Y, user can choose them freely when programming.
- ➤ Via auto tune, users can get the best sampling time and PID parameters and improve the control precision.
- ➤ User can choose positive or negative action via software setting. Positive action is used for heating control; negative action is used for cooling control.
- ➤ PID control separates the basic units with the expansions, which improves the flexibility of this function.
- > XD3 series PLC have two methods for auto tune, step response method and critical oscillation method.

For temperature control object:

Step response method: the PID auto tune will start when current temperature of object controlled is equal to ambient temperature.

Critical oscillation method: the PID auto tune can start at any temperature.

8-2. Instruction Form

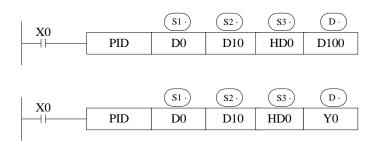
1. Brief Introduction of the Instructions

Execute PID control instructions with the data in specified registers.

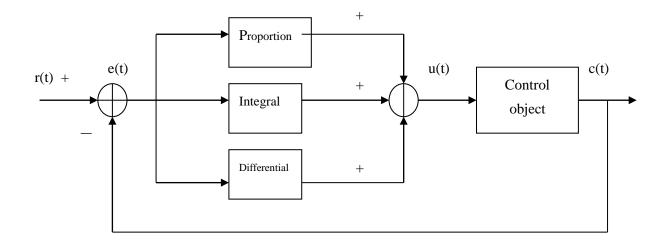
PID control [PID]						
16 bits	PID	32 bits	-			
instruction		instruction				
Executing	Normally ON/normally closed	Suitable	XD3			
condition	coil trigger	models				
Hardware		Software	V3.1.0			
requirement		requirement				

2. Operands

Operands	Function	Туре
S1	set the address of the target value (SV)	16bits, BIN
S2	set the address of the tested value (PV)	16 bits, BIN
S3	set the start address of the control parameters	16 bits, BIN
D	the address of the operation result (MV) or output port	16 bits, BIN; bit


3. Suitable soft components

	Operands				:	Syste	m				Constant	Mo	dule
		D*	FD	TD*	CD*	, [OX	DY	DM*	DS*	K/H	ID	QD
	S1	•	•								•		
Word	S2	•	•										
	S3	•	•										
	D	•	•										
Bit	Operands			Syst	em							1	
ы		X	Y	I* S*	T*	C*	Dn	ım					
	D		• •	•	•	•							


*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

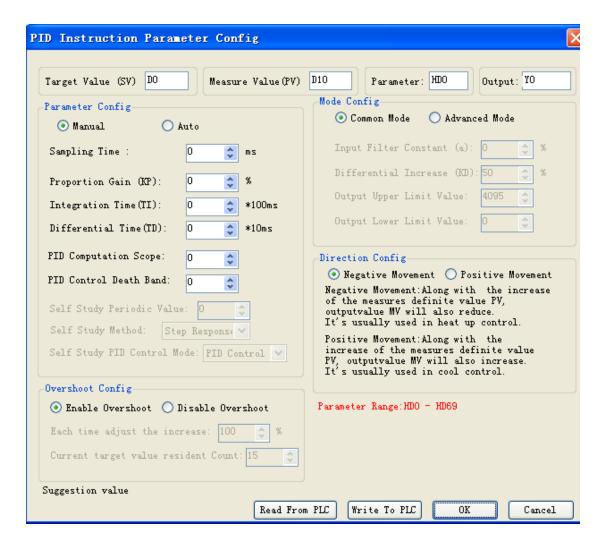
Functions and Action

- ➤ S3~ S3+ 69 will be occupied by this instruction, so please don't use them as the common data registers.
- > This instruction executes when each sampling time interval comes.
- For the operation result, data registers are used to store PID output values; the output points are used to output the occupy duty ratio in the form of ON/OFF.
- > PID control rules are shown as below:

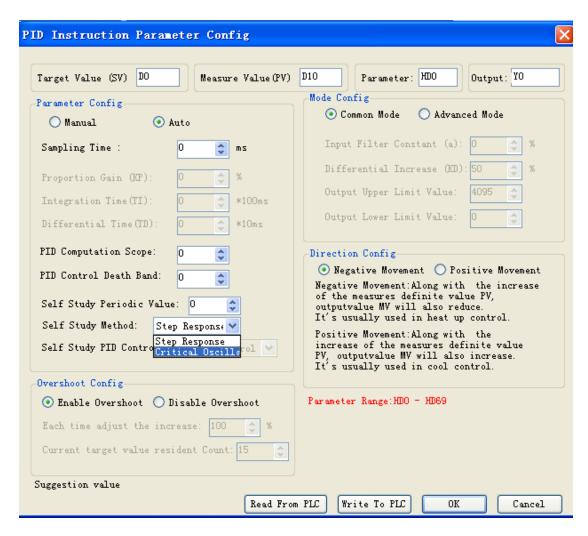
Analog PID control system

$$e(t) = r(t) - c(t)$$
 (1-1)
 $u(t) = Kp[e(t) + 1/Ti \int e(t)dt + TD de(t)/dt]$ (1-2)

Here, e(t) is offset value, r(t) is the given value, c(t) is actual output value and the u(t) is the control value;


In function (1-2), Kp is the proportion coefficient, Ti is the integration time coefficient, and TD is the differential time coefficient.

The result of the operation:


- 1. Analog output : digital form of MV = u(t), the default range is $0\sim4095$.
- 2. Digital output: Y = T * [MV / PID output upper limit]. Y is the outputs activate time within the control cycle. T is the control cycle, equals to the sampling time. PID output upper limit default value is 4095.

8-3. Parameters setting

Users can call PID in XCP Pro software directly and set the parameters in the window (see graph below), for the details please refer to XCP Pro user manual. Users can also write the parameters into the specified registers by MOV instructions before PID operation.

Auto tune mode:

V3.1.0 and higher version software can choose auto tune mode: step response or critical oscillation.

8-3-1. Register and their functions

PID control instruction's relative parameters ID, please refer to the below table:

ID	Function	Description	Memo
S3	Sampling time	32bits without sign	Unit ms
S3+1	Sampling time	32bits without sign	Unit ms

S3+2	Mode setting	bit0: 0: negative action;	
		1: positive action	
		bit1~bit6 not usable	
		bit7:	
		0: manual PID;	
		1: auto tune PID	
		bit8: 1: auto tune successful flag	
		bit9~bit10: auto tune method	
		00: step response	
		01: critical oscillation	
		bit11~bit12: not useful	
		bit13~bit14 auto tune PID	
		mode (valid in critical oscillation mode)	
		00: PID control	
		01: PI control	
		10: P control	
		bit15:	
		0: regular mode;	
		1: advanced mode;	
S3+3	Proportion Gain (Kp)	Range: 1~32767[%]	
S3+4	Integration time (TI)	0~32767[*100ms]	0 is taken as no integral.
S3+5	Differential time (TD)	0~32767[*10ms]	0 is taken as no differential.
S3+6	PID operation zone	0~32767	PID adjustment band width value

S3+7	Control death zone	0~32767	PID value keeps constant in death zone
S3+8	Input filtering constant (a)	0~99[%]	0:No input filtering
S3+9	Differential gain(KD)	0~100[%]	0:No differential gain
S3+10	Upper limit value of output	-32767~32767	
S3+11	Lower limit value of output	-32767~32767	
S3+12	Change of PID auto tune cycle	full scale AD value * (0.3~1%)	threshold
S3+13	PID auto tune overshoot allowing	0: enable overshoot 1: not overshoot (try to reduce the overshoot)	(valid when using step response method)
S3+14	current target value adjustment percent in auto tune finishing transition stage		
S3+15	current target value stop count in auto tune finishing transition stage		
S3+13~	S3+15do not use ID		
S3+16 ~ S3+69	II I	occupied by PID operation's internal process	

8-3-2. Parameters Description

• Movement direction:

Ш	Positive movement: the output value MV will increase with the increasing of the
	measured value PV, usually used for cooling control.
	Negative movement: the output value MV will decrease with the increasing of the

Mode setting

☐ Common Mode:

Parameters register range: S3~S3+69, and S3~S3+7 need to be set by users;

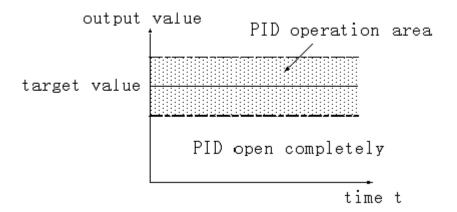
S3+8~S3+69 are occupied by system, users can't use them.

measured value PV, usually used for heating control.

☐ Advanced Mode

Parameters register range: S3 \sim S3+69, among them S3 \sim S3+7 and S3+8 \sim S3+12 need to be set by users;

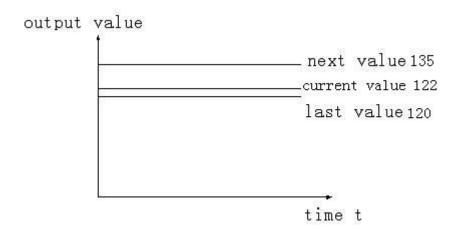
S3+16~S3+69 are occupied by system, users can't use them.


• Sample time[S3]

The system samples the current values according to some certain interval and compares them with the output value. This time interval is the sample time **T**. There is no requirement for **T** during **DA** output; **T** should be larger than one PLC scan period during port output. **T** value should be chosen among 100~1000 times of PLC scan periods.

PID Operation Zone[S3+6]

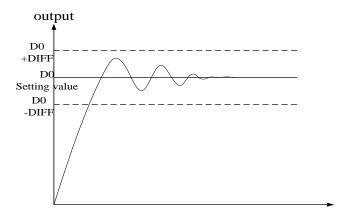
PID control is entirely opened at the beginning and close to the target value with the highest speed (default value is 4095), when it entered into the PID computation range, parameters Kp, TI, TD will be effective.


See graph below:

If the target value is 100, PID operation zone is 10, and then the real PID's operation zone is from 90~110.

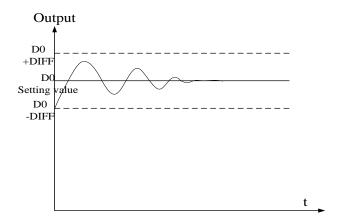
• Death Region [S3+7]

If the measured value changed slightly for a long time, and PID control is still in working mode, then it belongs to meaningless control. Via setting the control death region, we can overcome this situation. See graph below:


Suppose: we see the death region value to be 10. Then in the above graph, the difference is only 2 comparing the current value with the last value. It will not do PID control; the difference is 13 (more than death region 10) comparing the current value with the next value, this difference value is larger than control death region value. it will do the PID control with 135.

8-4. Auto Tune Mode

If users do not know how to set the PID parameters, they can choose auto tune mode which can find the best control parameters (sampling time, proportion gain **Kp**, integral time **Ti**, differential time **TD**) automatically.


- Auto tune mode is suitable for these controlled objects: temperature, pressure; not suitable for liquid level and flow.
- For step response method: Users can set the sampling cycle to be 0 at the beginning of the auto tune process then modify the value manually in terms of practical needs after the auto tune process is completed.
- For step response method: Before doing auto tune, the system should be under the non-control steady state. Take the temperature for example: the measured temperature should be the same to the environment temperature.
- For critical oscillation method: user needs to set the sampling time at the beginning of the auto tune process. For slow response system, 1000ms. For fast response system, 10-100ms.
- For critical oscillation method: the system can start the auto tune at any state. For object temperature, the current temperature doesn't need to be same to ambient temperature.
- Two different methods and PID control diagram:
 - (1) Step response method

 Make sure current temperature is equal to ambient temperature

(2) Critical oscillation method

The auto tune start temperature can be any value.

To enter the auto tune mode, please set bit 7 of (S3+2) to be 1 and turn on PID working condition. If bit 8 of (S3+2) turn to 1, it means the auto tune is successful.

• PID auto tune period value [S3+12]

Set this value in S3+12 during auto tune.

This value decides the auto tune performance, in a general way, set this value to be AD result corresponding to one standard tested unit. The default value is 10. The suggested setting range: fall-scale AD result ×0.3~1%.

User doesn't need to change this value. However, if the system is interfered greatly by outside, this value should be increased modestly to avoid wrong judgment of positive and negative movement. If this value is too large, the PID control period (sampling time) got from the auto tune process will be too long. As the result do not set this value too large.

※1: If users have no experience, please use the default value 10, set PID sampling time (control period) to be 0msthen start the auto tune.

• PID auto tune overshooting permission setting [S3+13]

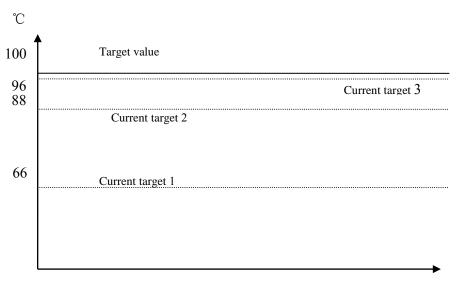
If set 0, overshooting is permitted, and the system can study the optimal PID parameters all the time. But in auto tune process, detected value may be lower or higher than the target value, safety factor should be considered here.

If set 1, overshooting is not permitted. For these objectives which have strict safety demand such as pressure vessel. Set [S3+13] to be 1 to prevent from tested value over the target value seriously.

In the process, if [S3+2] bit8 changes from 0 to 1, it means the auto tune is successful and the optimal parameters are got; if [S3+2] bit8 keeps 0, when [S3+2] bit7 changes from 1 to 0, it means auto tune is finished, but the parameters are not the best and they need to be modified by hand.

Every adjustment percent of current target value at auto tune process finishing transition
 stage [S3+14]

This parameter is effective only when [S3+13] is 1.


If doing PID control after auto tune, small range of overshooting may be occurred. It is better to decrease this parameter to control the overshooting. But response delay may occur if this value is too small. The defaulted value is 100% which means the parameter is not effective. The recommended range is 50~80%.

Cutline Explanation:

Current target value adjustment percent is 2/3 ($\mathbf{S3} + \mathbf{14} = 67\%$), the original temperature of the system is 0 °C, target temperature is 100 °C, and the current target temperature adjustment situation is shown as below:

Next current target value = current target value + (final target value – current target value) $\times 2/3$;

So the changing sequence of current target is 66 °C, 88 °C, 96 °C, 98 °C, 99 °C, 100 °C.

Current system value t

The stay times of the current target value in auto tune process finishing transition stage

[S3+15]

This parameter is valid only when [S3+13] is 1;

If entering into PID control directly after auto tune, small range of overshoot may

occur. It is good to prevent the overshoot if increasing this parameter properly. But it

will cause response lag if this value is too large. The default value is 15 times. The

recommended range is from 5 to 20.

8-5. Advanced Mode

Users can set some parameters in advanced mode in order to get better PID control effect.

Enter into the advanced mode, please set [S3+2] bit 15 to be 1, or set it in the XCP Pro

software.

Input Filter constant

It will smooth the sampling value. The default value is 0%, which means no filter.

Differential Gain

The low pass filtering process will relax the sharp change of the output value. The

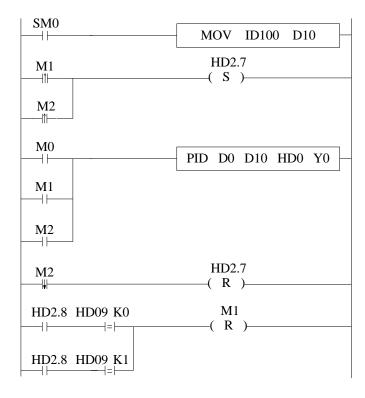
default value is 50%; the relaxing effect will be more obviously if increasing this value. Users

do not need to change it.

Upper-limit and lower-limit value

Users can choose the analog output range via setting this value.

Default value: lower-limit output =0


Upper-limit =4095

8-6. Application outlines

- Under the circumstances of continuous output, the system whose effect ability will die down with the change of the feedback value can do auto tune, such as temperature or pressure. It is not suitable for flux or liquid level.
- Under the condition of overshooting permission, the system will get the optimal PID parameters from self study.
- Under the condition that overshoot not allowed, the PID parameters got from auto tune is up to the target value, it means that different target value will produce different PID parameters which are not the optimal parameters of the system and for reference only.
- If the auto tune is not available, users can set the PID parameters according to practical experience. Users need to modify the parameters when debugging. Below are some experience values of the control system for your reference:
 - Temperature system: P (%) 2000 \sim 6000, I (minutes) 3 \sim 10, D (minutes) 0.5 \sim 3
 - Flux system: P (%) 4000 ~ 10000, I (minutes) 0.1 ~ 1
 - Pressure system: P (%) $3000 \sim 7000$, I (minutes) $0.4 \sim 3$
 - Liquid level system: P (%) $2000 \sim 8000$, I (minute) $1 \sim 5$

8-7. Application

PID control program is shown below:

// Move ID100 content into D10

// convert PID mode to be auto tune at the beginning/ end of the auto tune control.

// start PID, D0 is target value, D10 is the measured value, the zero from HD0 is PID parameters area; output PID result bvY0

// PID control finish, close auto tune PID mode

// if auto tune is successful, and overshoot is permitted, close auto tune control bit, auto tune will finish;

If auto tune turns to be manual mode, and overshoot is not permitted, close auto tune control bit.

Soft element function comments:

HD2.7: Auto tune bit

HD2.8: Successful auto tune mark

M0: Normal PID control

M1: Auto tune control

M2: Enter PID control after auto tune

9 C Language Function Block

In this chapter, we focus on C language function block's specifications, edition, instruction calling, application points etc. We also attach the common function list.

9-1. Summary

XD3 supports almost all C language function in XDPPro software (also supports global variable). Users can call the function at many places and call different functions, which greatly increase program security and programmer's efficiency.

9-2. Instruction Format

1. Instruction Summary

Call the C language Function Block at the specified place.

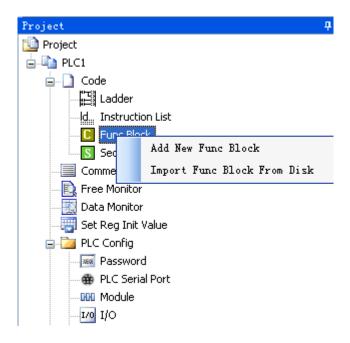
Call the C language function block [NAME_C]					
16 bits	NAME_C	32 bits	-		
instruction		Instruction			
P .:	N. II ON/OFF	G 1, 11	VD2		
Execution	Normally ON/OFF,	Suitable	XD3		
condition	Rising/Falling Edge activation	Models			
Hardware		Software			

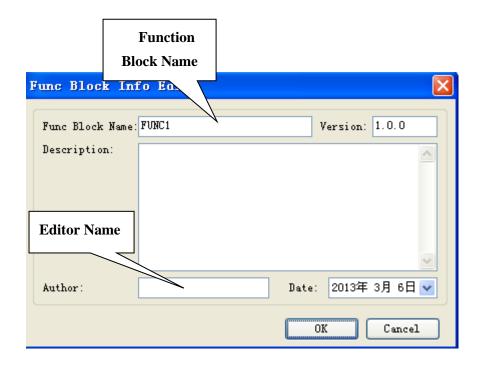

2. Operands

Operands	Function	Туре
S1	Name of C Function Block, defined by the user	String
S2	Corresponding start ID of word W in C language function	16 bits, BIN
S3	Corresponding start ID of word B in C language function	16 bits, BIN

3. Suitable Soft Components

ID QI	<u> </u>


*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.


- S1 is the function name. It consists of numbers, letters and underlines. The first character can't be number, and the name length should be < =9 ASC.
- The name can be the same with PLC's self instructions like LD, ADD, SUB, PLSR etc. The name can't be the same with the function blocks existing in current PLC;

9-3. Operation Steps

1. Open PLC edit tool, in the left "Project" toolbar, choose "Func Block", right click it and choose "Add New Func Block".

2. See graph below, fill in the information of your function;

Function Block name is the name we use to call the BLOCK. For example: the diagram of FUNC1 should be written as below:

3. After creating the new Function Block, you can see the edit interface as shown below:

• Parameters' transfer way: if call the **Function Block** in ladder, the transferred D and M is the start ID of W and B. Take the above graph as the example, start with D0 and M0, then W[0] is D0, W[10] is D10, B [0] is M0, B [10] is M10; if the used parameters in the ladder are D100, M100, then W[0] is D100, B [0] is M100; if the parameters in the ladder are HD0, HM0, then W[0]=HD0,B[0]=HM0; if the parameters in the ladder are D100, HM100, then W[0]=D100, B[0]=HM100. So, word and bit components start address are defined in PLC program by the user.

Note: The coil and data type in one C language should be the same. All the coils in C language are power loss retentive, or not power loss retentive; so is the same with data register.

- ➤ Parameter W: represent Word soft component, use it in the form of data group. E.g W[0]=1; W[1]=W[2]+W[3]; in the program, use soft components according to standard C language rules.
- Parameter **B**: represent **Bit** soft component, use it in the form of data group. Support **SET** and **RESET**. E.g.: B[0]=1; B[1]=0; And assignment, for example, B[0]=B[1].
- ▶ Double word operation: add **D** in front of **W**. E.g. DW[10]=100000, it means assignment to double-word W[10]W[11].
 Double-word operation: Support the definition of floating variable in the function, and execute floating operation; (E.g. float register D0(double word) means FW[0], FW[0]=123.456).
- Other soft elements definition in C language:

In C language of PLC, if you want to use input(X) and output(Y), then macro definition '#define SysReg Addr_X_Y' is needed; E.g. send the state of input X0 to given coil M0, then B[0]=X[0]; send the state of Y0 to given coil M10, then: B[10]=Y[0]; (Note: corresponding X Y in C language is decimal, not Octonary number).

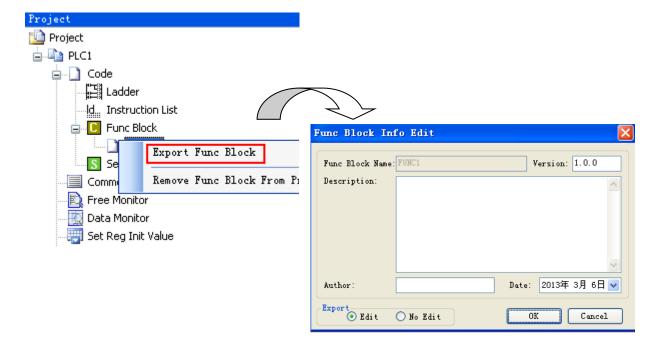
In a similar way, if the not-power-loss-retentive flow S, Counter C, timer T, counter register TD is in the C language, macro definition '#define SysRegAddr_S_C_T_CD_TD' is also needed; if the power-loss-retentive flow HS, counter HC, timer HT, counter register HCD, timing register HTD etc, macro definition '#define SysRegAddr_HS_HC_HT_HCD_HTD' is needed.

E.g: W[0]=CD[0];W[1]=TD[0];B[1]=C[0];B[2]=T[0];

- Function Library: In **Function Block**, users can use the Functions and Constants in function library directly. For the Functions and Constants in function library, see 9-8.
- The other data type supported:

BOOL; //BOOL Quantity INT8U; //8 bits unsigned integer INT8S: //8 bits signed integer INT16U //16 bits unsigned integer INT16S //16 bits signed integer INT32U //32 bits unsigned integer INT32S //32 bits signed integer FP32: // single precision floating FP64; //double precision floating

Predefined Marco: #define true 1
#define false 0

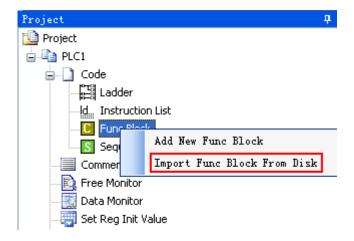

#define TRUE 1

#define FALSE 0

9-4. Import and Export the Functions

1. Export

(1) Function: Export the function as the file, then other PLC program can import to use;

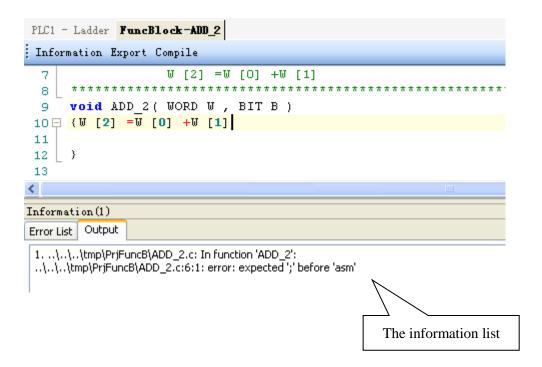


(2) Export Format

- a) Editable: Export the source codes out and save as a file. If import again, the file is editable;
 - b) Not editable: Don't export the source code, if import the file, it's not editable;

2. Import

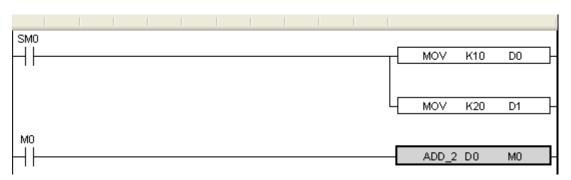
Function: Import the existing Func Block file, to use in the PLC program.

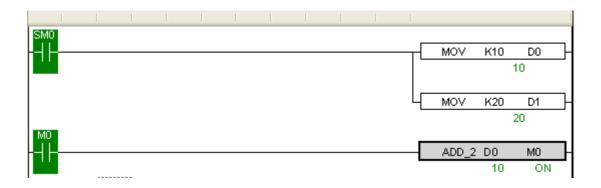


Choose the **Func Block**, right click 'Import Func Block from Disk', choose the correct file, and then click OK.

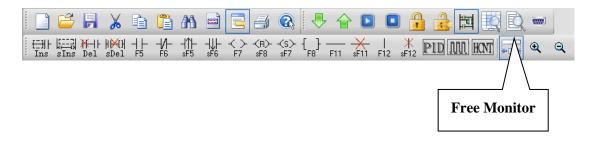
9-5. Edit the Func Blocks

Example: Add D0 and D1 in PLC's registers, and then assign the value to D2;


- (1) In 'Project' toolbar, new create a **Func Block**, here we name the **Func Block** as **ADD_2**, then edit C language program;
- (2) Click 'compile' after edition.


According to the information shown in the output blank, we can search and modify the grammar error in C language program. Here we can see that in the program there is no ';' sign behind W [2] = W[0] + W[1].

Compile the program again after modifying the program. In the information list, we can confirm that there is no grammar error in the program.

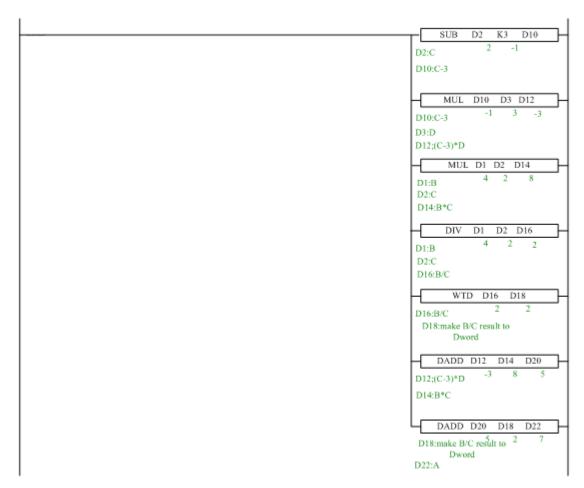

(3) Write PLC program, assign value 10 and 20 into registers D0, D1 separately, then call Func Block ADD_2, see graph below:

(4) Download program into PLC, run PLC and set M0.

(5) From Free Monitor in the toolbar, we can see that D2 changes to be 30, it means assignment is successful;

9-6. Program Example

If PLC needs to do complicated calculation (including plus and minus calculation), the calculation will be used for many times, C language function is easy to use.

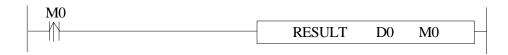

Example 1:

Calculation a = b/c + b*c+(c-3)*d

Method 1: use ladder chart:

- ➤ Get the result of c-3
- > Get the result of three multiplication equations
- > Get the sum

Ladder chart only support two original operands, it needs many steps to get the result.



Note:

(1) The result of MUL is Dword, the result is stored in D14~D15.

- (2) The result of DIV has quotient D16 and remainder D17. If D17 has value, the calculation precision will decrease. Please use float format to ensure the precision.
- (3) D16 quotient is word value, in plus calculation all the data should be changed to Dword. The final result is stored in D22~D23.

Method 2: use C language:

RESULT	Function name
D0	In the function, W [0] =D0, W [1] =D1
	If D0=D32, then W [0] =D32, W [1] =D33
	If S2=HD32, then W [0] =HD32, W [1] =HD33
M0	In the function, B [0] = M0, B [1] = M1
	If S2=M32, then B [0] = M32, B [1] = M33
	If S2=HM32, then B [0] = HM32, B [1] =HM33

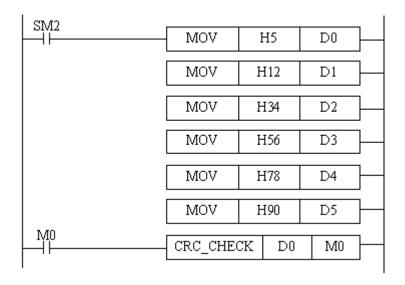
C language:

```
void RESULT( WORD W , BIT B )
 9
10 □ {
    long int a,b,c,d;;
11
12
    b=W[1];
13
    c=W[2];
    d=W[3];
14
     a=b/c+b*c+(c-3)*d;
15
16
    DW[4] =a;
17
```

Method 2 can simplify the program.

The above C language function is similar to ladder chart of method 1, whose precision is not high. If it needs to get the high precision, please use float calculation.

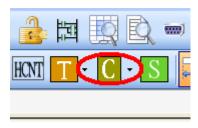
Example 2: Calculate CRC parity value via Func Block

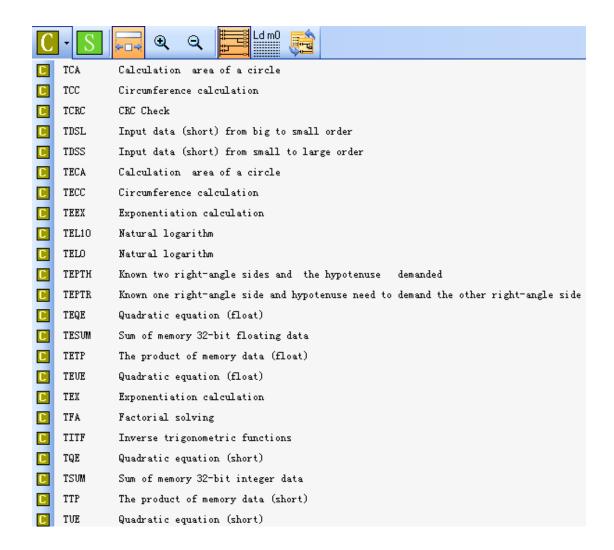

- CRC calculation rules:
 - (1) Set 16-bit register (CRC register) = FFFF H
 - (2) XOR (Exclusive OR) the first 8-bit byte message and the low 16-bit CRC register.
 - (3) Right shift 1 bit of CRC register, fill 0 into the highest bit.
 - (4) Check the right shifted value, if it is 0, save the new value from step3 into CRC register; if it is not 0, XOR the CRC register value with A001 H and then save the result into the CRC register.
 - (5) Repeat step3&4 until all the 8-bit have been calculated.
 - (6) Repeat step (2) ~ (5), then calculate the next 8-bit message. Until all the messages have been calculated, the result will be the CRC parity code in CRC register.
- Edit C language Function Block program, see graph below:

```
void CRC CHECK( WORD W , BIT B )
10 □ {
         int i,j,m,n;
11
         unsigned int reg crc=0xffff,k;
12
13
         for (i = 0; i < W[0]; i++)
14
15 🖨
              reg crc^=W[i+1];
16
              for (j=0; j<8; j++)</pre>
17
18 🖨
              if (reg crc €0x01)
19
                  reg_crc=(reg_crc>>1)^0xa001;
20
              else
21
22
                  reg_crc=reg_crc>>1;
23
              }
24
              }
25
26
              m = W[0] + 1;
              n=W[0]+2;
27
28
              k=reg crc €0xff00;
              W[n] = k >> 8;
29
              W[m] = reg crc & Oxff;
30
31
```

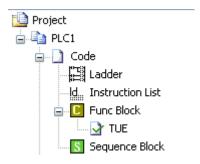
Edit PLC ladder program,

D0: Check byte number of data,


D1~D5: Check data content. See graph below:


• Download to PLC, then RUN PLC, set M0, via Free Monitor, we can find that values in D6 and D7 are the highest and lowest bit of CRC parity value;

9-7. Application


- In one Func Block file, you can write many functions, and they can be called by each other.
- Each Func Block file is independent, they can't call block in each other;
- Func Block files can call C language library function in form of floating, arithmetic like sin, cos, tan.
- XC series PLC only support local variable, while XD3 series PLC support both local and global variable. This makes C language Block more flexible and convenient.
- XDPPro software v3.3 and later version keep C function library:

In this function block, user can call the C function directly:

For example: click TEL10, the function name will show on the project bar:

User can call it in the ladder chart editing window at any time.

9-8. Function Table

The default function library

Constant	Data	Description
_LOG2	(double)0.693147180559945309417232121458	Logarithm of 2
_LOG10	(double)2.3025850929940459010936137929093	Logarithm of 10
_SQRT2	(double)1.41421356237309504880168872421	Radical of 2
_PI	(double)3.1415926535897932384626433832795	PI
_PIP2	(double)1.57079632679489661923132169163975	PI/2
_PIP2x3	(double)4.71238898038468985769396507491925	PI*3/2

String Function	Description
void * memchr(const void *s, int c, size_t n);	Return the first c position among n words before s position
int memcmp(const void *s1, const void *s2, size_t n);	Compare the first n words of position s1 and s2
void * memcpy(void *s1, const void *s2, size_t n);	Copy n words from position s2 to s1 and return s1
void * memset(void *s, int c, size_t n);	Replace the n words start from s position with word c , and return to position s
char * strcat(char *s1, const char *s2);	Connect string ct behind string s
char * strchr(const char *s, int c);	Return the first word c position in string s
int strcmp(const char *s1, const char *s2);	Compare string s1 and s2
char * strcpy(char *s1, const char *s2);	Copy string s1 to string s2

Double-precision math function	Single-precision math function	Description
double acos(double x);	float acosf(float x);	Inverse cosine function

double asin(double x);	float asinf(float x);	Inverse sine function
double atan(double x);	float atanf(float x);	Inverse tangent function
double atan2(double y, double x);	float atan2f(float y, float x);	Inverse tangent value of parameter (y/x)
double ceil(double x);	float ceilf(float x);	Return the smallest double integer which is greater or equal with parameter x
double cos(double x);	float cosf(float x);	Cosine function
double cosh(double x);	float coshf(float x);	Hyperbolic cosine function, $cosh(x)=(e^{x}+e^{(-x)})/2$
double exp(double x);	float expf(float x);	Exponent (e^x) of a nature data
double fabs(double x);	float fabsf(float x);	Absolute value of parameter x
double floor(double x);	float floorf(float x);	Return the largest double integer which is smaller or equals with x
double fmod(double x, double y);	float fmodf(float x, float y);	If y is not zero, return the reminder of floating x/y
double frexp(double val, int _far *exp);	float frexpf(float val, int _far *exp);	Break floating data x to be mantissa and exponent x = m*2^exp, return the mantissa of m, save the logarithm into exp.
double ldexp(double x, int exp);	float ldexpf(float x, int exp);	X multiply the (two to the power of n) is x*2^n.
double log(double x);	float logf(float x);	Nature logarithm logic
double log10(double x);	float log10f(float x);	logarithm (log10x)
double modf(double val, double *pd);	float modff(float val, float *pd);	Break floating data X to be integral part and decimal part, return the decimal part, save the integral part into parameter ip.
double pow(double x, double y);	float powf(float x, float y);	Power value of parameter y (x^y)
double sin(double x);	float sinf(float x);	sine function

double sinh(double x);	float sinhf(float x);	Hyperbolic sine function, $sinh(x)=(e^x-e^(-x))/2$
double sqrt(double x);	float sqrtf(float x);	Square root of parameter X
double tan(double x);	float tanf(float x);	Tangent function.
double tanh(double x);	float tanhf(float x);	hyperbolic tangent function $\tanh(x) = (e^x - e^(-x))/(e^2 + e^(-x))$

The using method of the functions in the table:

```
float asinf (float x);
```

float asinf: float means the return value is float format;

float x: float means the function formal parameter is float format. In actual using, it do not need to write the float. See line 14 in the following example:

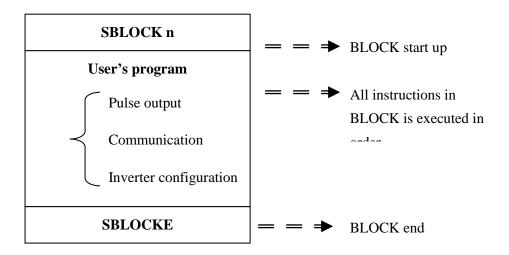
```
9 void ZHENGXIAN ( WORD W , BIT B )
10 □ {
11
   int a;
12
   float x, y, z;
   x=FW[0];
13
    y=asinf(x);
14
    z=180*y/3.14159;
15
16
    a= (int) z;
17
    W[2]=a;
18 }
```

10 Sequence BLOCK

This chapter mainly introduces sequence block instruction and the application.

Sequence Block instruction:

Mnemonic	Function	Ladder chart	Chapter
Sequence Bl	ock		
SBSTOP	Pause BLOCK	SBSTOP S1 S2	10-6-1
SBGOON	Go to execute BLOCK	SBGOON S1 S2	10-6-1

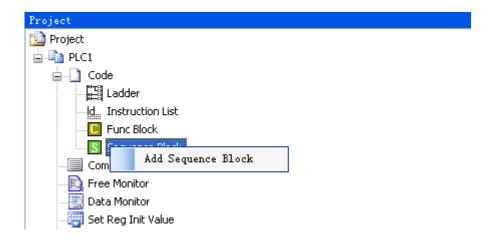

10-1. Concept of the BLOCK

Sequence block whose brief name is BLOCK is a program block to realize some functions. As a special flow, all instructions in the block are executed in order, which is the biggest difference with general processes.

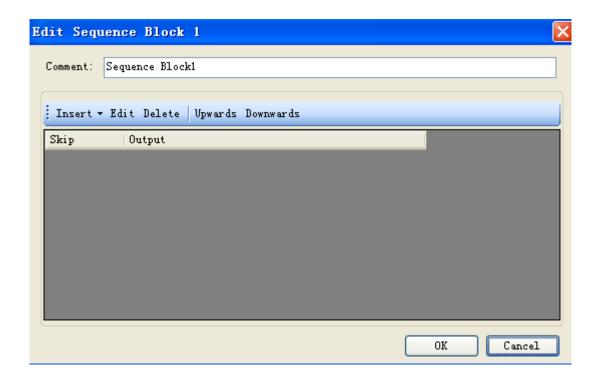
BLOCK starts from SBLOCK and ends with SBLOCKE, and programmers can write instructions in the BLOCK. If one BLOCK contains multiple pulse output instructions (or other instructions), then pulse output instructions will execute in accordance with conditions meet order; And meanwhile the next pulse output instruction will not execute until the current instruction is over.

The XD3 series PLC supports multiple BLOCKs*1.

A complete BLOCK structure is shown as below:

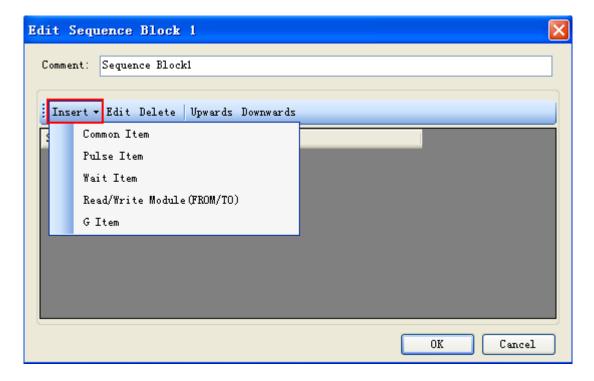

※1: XD3 series PLC can support up to 8 BLOCK. When the BLOCK trigger condition is normal ON coil, the BLOCK will execute from the top to down and return to the top to execute until the trigger condition is OFF; When the BLOCK trigger condition is rising edge, the sequence BLOCK will execute from the top to bottom only one time.

10-2. Call the BLOCK

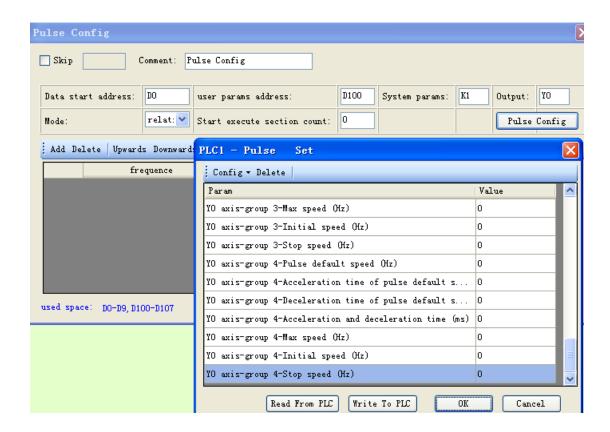

In one program file, it can call many BLOCK; the following is the method to add BLOCK in the program.

10-2-1. Add the BLOCK

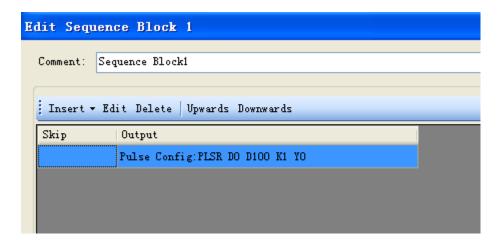
Open XDPPro software, right click the sequence block in the project bar:

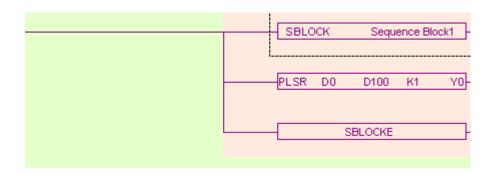


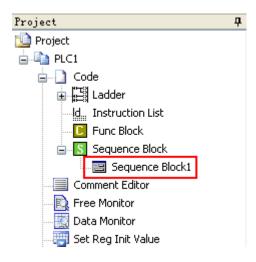
Click the command 'add sequence block', the following window will jump out:



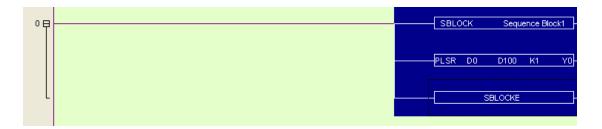
You can edit the BLOCK in the window, Upwards/Downwards are used to change the position of instructions in the block.


Click 'insert' button, some instructions list under the menu:

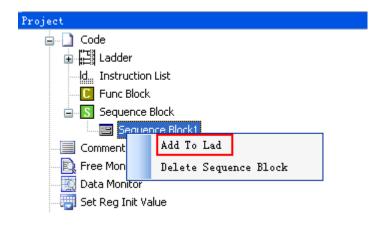

Take 'Pulse Item' for example:


After click 'OK', you will find information in the configuration:

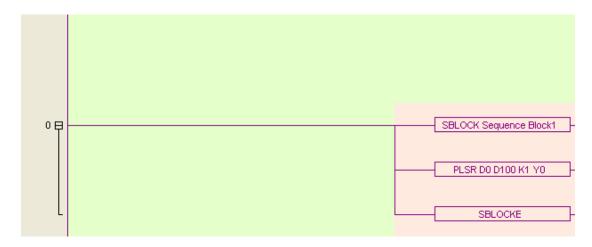
Click 'OK', the following instructions are added in the ladder:



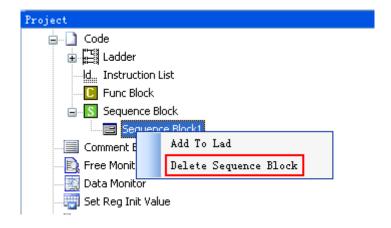
Meantime, a new sequence block is added in the right of the project bar:



10-2-2. Move the BLOCK

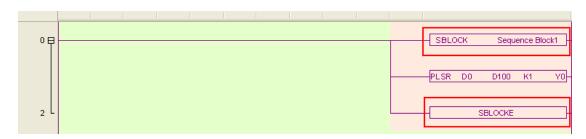

If you want to move the BLOCK to other place, you have to select the original BLOCK and delete it (select all, then delete):

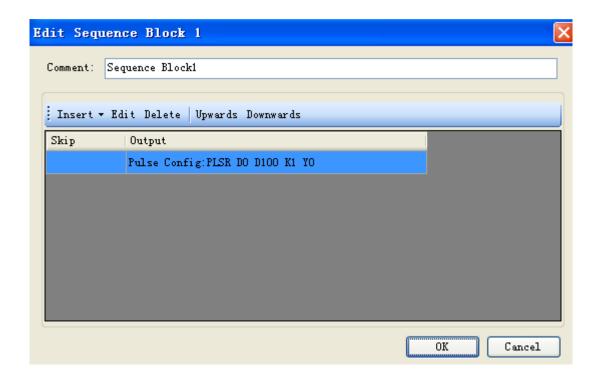
Move the cursor to the new place, and then right click the BLOCK and select 'add to lad':



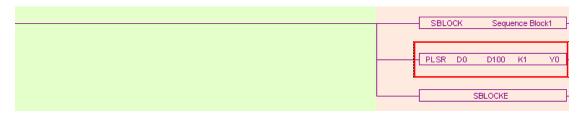
Now the BLOCK is moved to the new place:

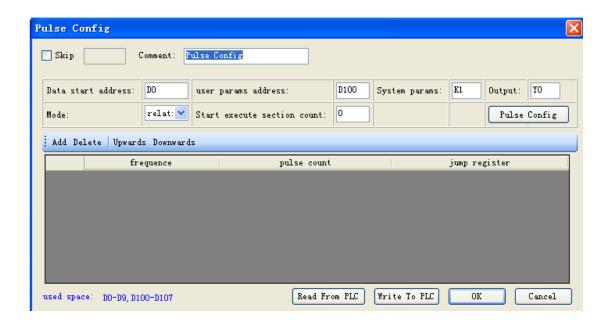
10-2-3. Delete the BLOCK


You can select the called BLOCK and delete it. If you want to completely delete the BLOCK, right click the function block and select 'delete sequence block'. After this operation, you can't call this BLOCK any more:

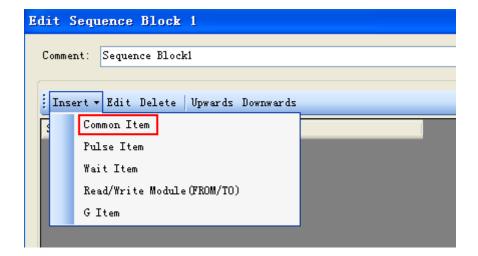


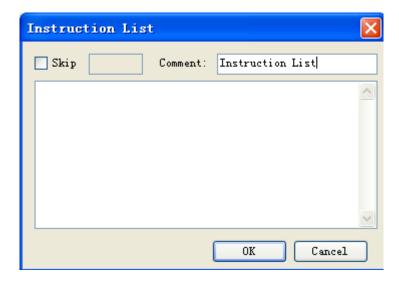
10-2-4. Modify the BLOCK


There are two methods to modify the BLOCK.


(A) Double click the start/end segment to modify the BLOCK in general:

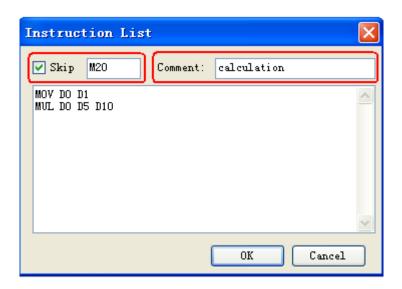
(B) Double click the middle part to modify:

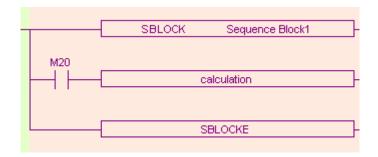



10-3. Edit the instruction of the BLOCK

10-3-1. Command item

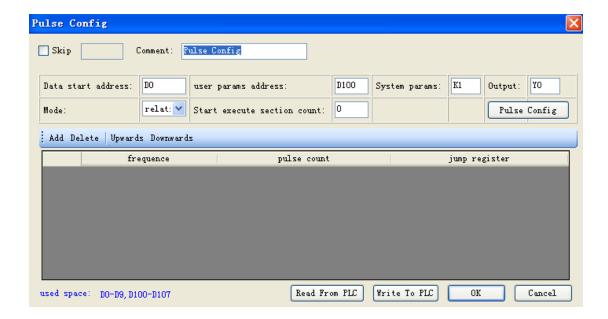
Use 'command item' to edit the program:

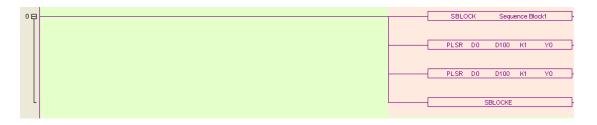

An 'instruction list' will jump out after click the 'command item':


Users can add instructions in the frame.

Skip: to control the stop and run of the instructions. If you select skip and input control coil in the frame, then when the control coil is ON, the command will not be executed. If not select, the default action is execution.

Comment: to modify the note for the instruction.

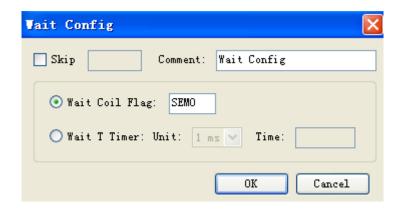

Click 'OK', the ladder program will change as the following:


Note: We can add multiply instructions in one BLOCK and use 'Skip' as every instruction's execution condition.

10-3-2. Pulse Item

Open the 'pulse item' in the same way:

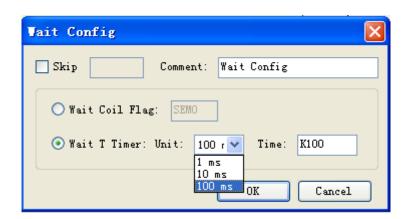
In the following BLOCK, we add two impulse instructions:

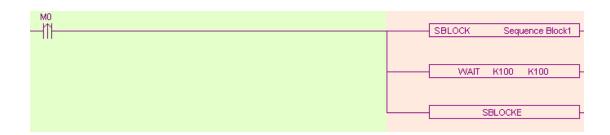


10-3-3. Wait Item

'Wait Item': to wait coil flag or timer bit.

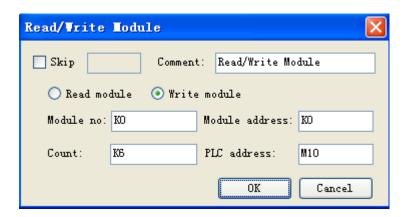
Open 'Wait Item' in the same way. There are two waiting modes: flag bit and timer wait.


(A) Flag bit

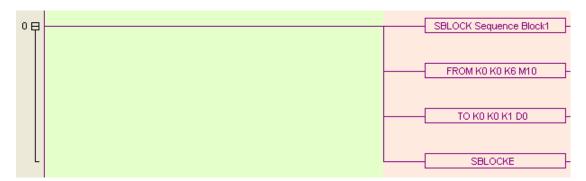

SEM corresponding ladder diagram is as below:

(B) Timer wait

(C) Corresponding ladder diagram:

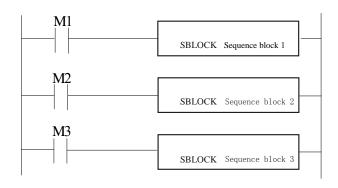


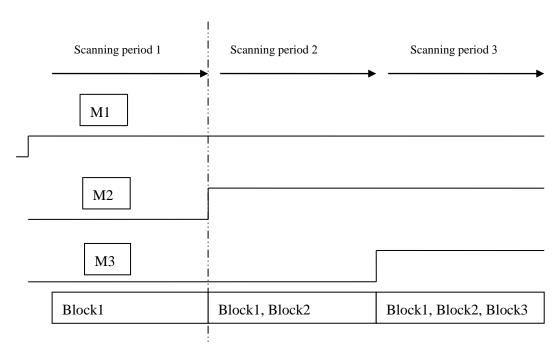
Note: Do not add normal coil after WAIT instruction in XD3 series PLC sequence BLOCK, and add XD3 series PLC special signal SEM bit(SEM0~SEM31); SEM cannot be controlled by set or reset. It can only be set by POST instruction and reset by WAIT SEM instruction.

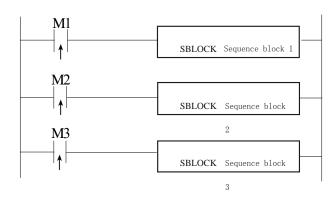

10-3-4. Module Read and Write (FROM/TO) instruction

This item is used to read and write data between PLC and modules, and the operate panel is as below:

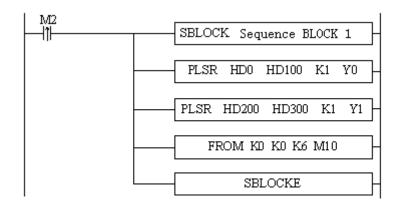
1#read

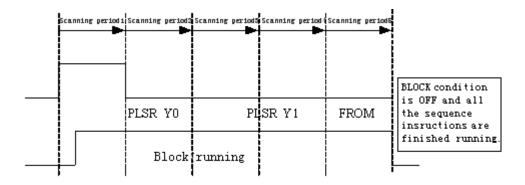



FROM\TO instruction can be selected from pull-down list:

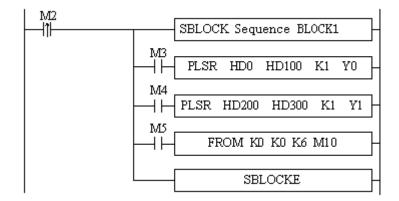

10-4. Running form of the BLOCK

- 1. If there are many blocks, they run as the normal program. The block is running when the condition is ON.
 - (A) The condition is normal ON, normal OFF coil


(B) The condition is rising or falling edge of pulse


When M1, M2, M3 is from OFF to ON, all these blocks will run once.

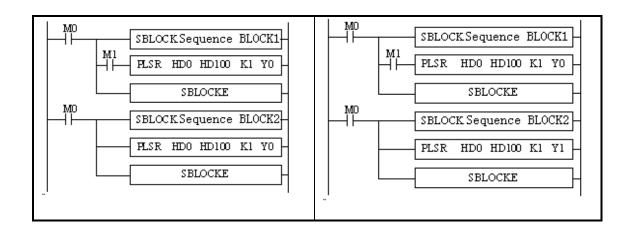
2. The instructions in the block run in sequence according to the scanning time. They run one after another when the condition is ON.


(A) Without SKIP condition

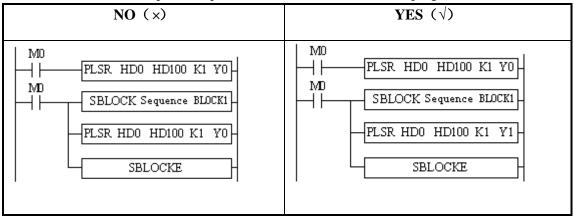
The instructions running sequence in block 1 is shown as below:

(B) With SKIP condition

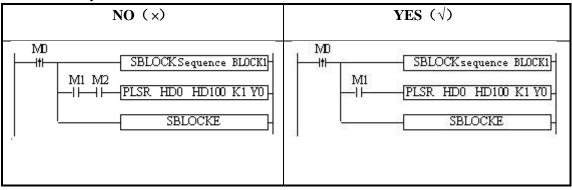
Explanation:

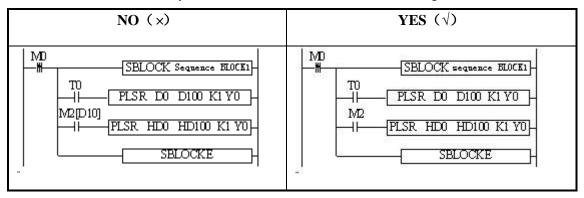

- A) When M2 is ON, block 1 is running.
- B) All the instructions run in sequence in the block.
- C) M3, M4, M5 are the sign of SKIP, when they are ON, this instruction will not run.
- D) When M3 is OFF, if no other instructions use this Y0 pulse, DPLSR D0 D2 D4 Y0 will run; if not, the DPLSR D0 D2 D4 Y0 will run after it is released by other instructions.
- E) After "DPLSR D0 D2 D4 Y0" is over, check M4. If M4 is OFF, check "DPLSR D0 D2 D4 Y1", if M4 is ON, check M5. If M5 is OFF, "inverter config" will run.

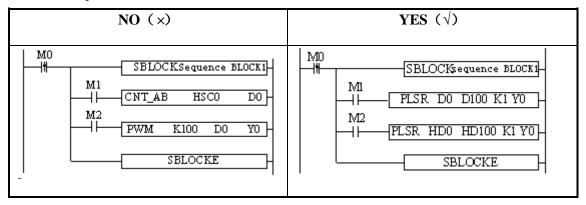
10-5. BLOCK instruction editing rules

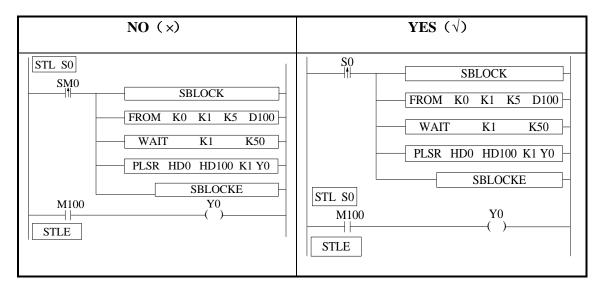

In the BLOCK, the instruction editing should accord with some standards.

1. Do not use the same pulse output terminal in different BLOCK.


NO (x)	YES (√)


2. Do not use the same pulse output terminal in BLOCK and main program.


3. There only can be one SKIP condition for one BLOCK instruction.


4. The SKIP condition only can use M, X, can not use other coil or register.

5. The output instructions cannot be CNT_AB(CNT), PWM.

6. BLOCK is not recommended to put in the STL, because if one STL ends, while the BLOCK doesn't end, then big problem will happen.

7. Label Kind type cannot be used in the block

Sign P, I cannot be used in block. Even they can be added in block, but they do not work in fact.

10-6. BLOCK related instructions

10-6-1. Instruction explanation

stop running the BLOCK [SBSTOP]

1. Summarization

Stop the instructions running in the block

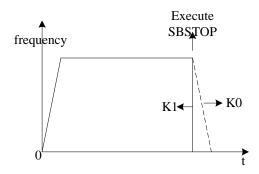
[SBSTOP]			
16 bits	SBSTOP	32 bits	-
Condition	NO,NC coil and pulse edge	Suitable types	XD3
Hardware		Software	V3.1.0

2. Operand

Operand	Function	Туре
S1	The number of the BLOCK	16bits, BIN
S2	The mode to stop the BLOCK	16bits, BIN

3. Suitable component

Word D^* FD D^*		Registe	Operand
	DM* DS* K/H ID Q	FD TD* CD* DY	Word
S1 • •	•		S1
S2 •	•		S2


*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

S2 is the mode for BLOCK stop, operand: K0, K1

K0: stop the BLOCK slowly, if the pulse is outputting, the BLOCK will stop after the pulse outputting is finished.

K1: stop the BLOCK immediately; stop all the instructions running in the BLOCK.

Continue running the BLOCK[SBGOON]

1. Summarization

This instruction is opposite to BSTOP. To continue running the BLOCK.

[SBGOON]			
16 bits	SBGOON	32 bits	-
Condition	Pulse edge	Suitable types	XD3
Hardware	-	Software	V3.1.0

2. Operand

Operand	Function	Туре
S1	The number of the BLOCK	16 bits, BIN

	S2	The mode to continue running the BLOCK	16 bits, BIN
ı			
L			

3. Suitable component

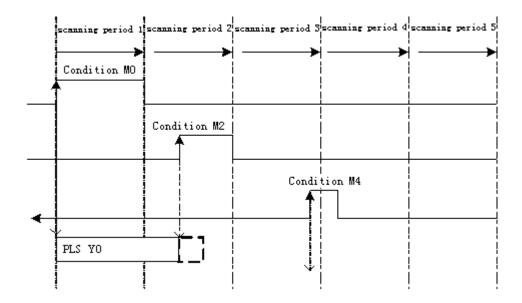
Word Operand Register									Constant	Мо	dule	
		D*	FD	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
	S1	•								•		
	S2									•		

*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM includes DM, DHM; DS includes DS, DHS.

S2 is the mode to continue running the BLOCK. Operand: K0, K1.

K0: continue running the instructions in the BLOCK.

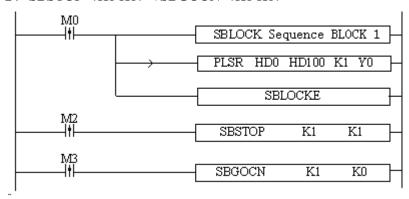

For example, if pulse outputting stopped last time, SBGOON will continue outputting the rest pulse;

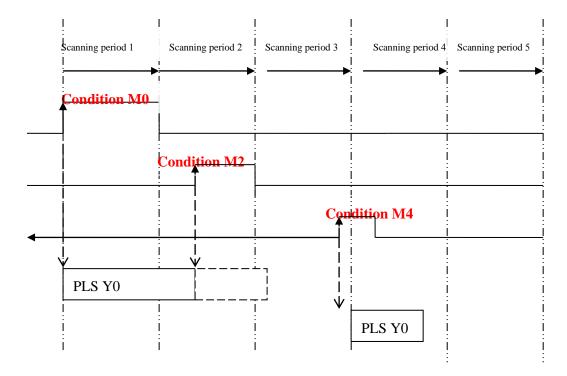

K1: continue running the BLOCK, but abandon the instructions have not finished last time.

Such as the pulse output instruction, if the pulse has not finished last time, SBGOON will not continue outputting this pulse but go to the next instruction in the BLOCK.

10-6-2. The timing sequence of the instructions

1、SBSTOP (K1 K1) +SBGOON (K1 K1)

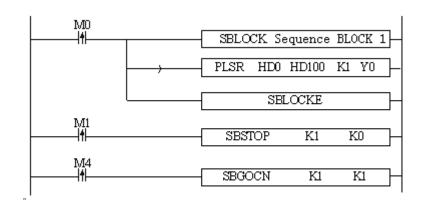


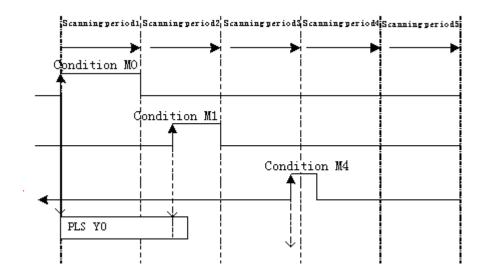

When M0 is from OFF→ON, run "PLSR HD0 HD100 K1 Y0" in the BLOCK to output the pulse;

When M2 is from OFF→ON, the BLOCK stops running at once;

When M4 is from OFF→ON, abandon the rest pulse.

2、SBSTOP (K1 K1) +SBGOON (K1 K0)

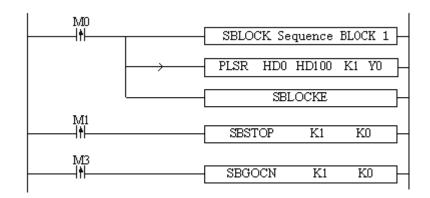


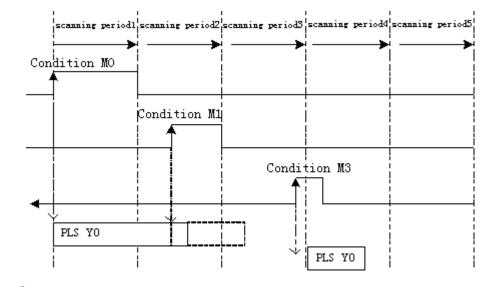


When M0 is OFF→ON, run 'PLSR HD0 HD100 K1 Y0' in the BLOCK to output the pulse; When M2 is OFF→ON, the BLOCK stops running, the pulse output stops at once;

When M4 is OFF→ON, output the rest pulses.

3、SBSTOP (K1 K0) +SBGOON (K1 K1)




When M0 is from OFF \rightarrow ON, run 'PLSR HD0 HD100 K1 Y0' in the BLOCK to output the pulse;

When M1 is from OFF→ON, stop running the BLOCK, the pulse will stop slowly with slope;

When M4 is from OFF→ON, abandon the rest pulses.

4、SBSTOP(K1 K0)+SBGOON(K1 K0)

When M0 is from OFF \rightarrow ON, run 'PLSR HD0 HD100 K1 Y0' in the BLOCK to output the pulse;

When M1 is from OFF→ON, suspend running the BLOCK, the pulse will stop slowly with slope;

When M3 is from OFF→ON, output the rest pulses.

Please note that by the SBSTOP stops the pulse with slope, there may be still some pulses; in this case, if run SBGOON K1 again, it will output the rest of the pulses.

10-7. BLOCK flag bit and register

1、BLOCK flag bit:

Address	Function	Explanation
SM300	BLOCK1 running flag	
SM301	BLOCK2 running flag	
SM302	BLOCK3 running flag	1: running
		0: not running
SM399	BLOCK100 running flag	

2. BLOCK flag register:

Address	Function	Explanation
SD300	BLOCK1 running instruction	
SD301	BLOCK2 running instruction	
SD302	BLOCK3 running instruction	BLOCK use this value when
		monitoring
SD399	BLOCK100 running instruction	

11 Special Function Instructions

This chapter mainly introduces PWM (pulse width modulation), precise timing, interruption etc.

Special Function Instructions List:

Mnemonic	Function	Circuit and soft components	Chapter									
Pulse Width	Pulse Width Modulation, Frequency Detection											
PWM	Output pulse with the specified duty cycle and frequency	PWM S1 S2 D	4-1									
Time												
STR	Precise Time	STR D1 D2	4-2									
Interruption												
EI	Enable Interruption	EI	4-3-1									
DI	Disable Interruption	DI	4-3-1									
IRET	Interruption Return	IRET	4-3-1									

11-1. Pulse Width Modulation [PWM]

1. Instruction's Summary

Instruction to realize PWM pulse width modulation

PWM pulse w	vidth modulation [PWM]		
16 bits	PWM	32 bits	-
instruction		instruction	
execution	normally ON/OFF coil	suitable	XD3
condition		models	
hardware	-	software	-
requirement		requirement	

2. Operands

Operands	Function	Туре
S1	specify the duty cycle value or soft component's ID number	16 bits, BIN
S2	specify the output frequency or soft component's ID number	16 bits BIN
D	specify the pulse output port	bit

3. Suitable Soft Components

-	1		System								MO	dule
	D*	FD	ED	TD*	CD*	DX	DY	DM*	DS*	K/H	ID	QD
S1	•	•		•	•					•		
S2	•	•		•	•					•		
Operands			S	ystem								
-	X	Y	M* S	S* T	* C*	Dn.m	1					
D		•										
(S2 Operands	Operands X	Operands X Y N	Operands S X Y M* S	S2 • • • Operands System X Y M* S* T*	S2 • • • Operands System X Y M* S* T* C*	System X Y M* S* T* C* Dnm	System	System X Y M* S* T* C* Dnm	System	System System	System X Y M* S* T* C* Dnm

*Note: D includes D HD; TD includes TD HTD; CD includes CD HCD HSCD HSD; DM includes DM DHM; DS includes DS DHS. M includes M HM SM; S includes S HS; T includes T HT; C includes C HC

Function and


Duty cycle n: 1~32767Output pulse f: 1~200KHz

• Pulse is output **Y0** or **Y1** (Please use transistor output)

• Duty cycle of **PWM** output = $n/32768 \times 100\%$

• PWM use the unit of 0.1Hz, so when set S2 frequency, the set value is 10 times of the actual frequency (10f). E.g.: to set the frequency as 72 KHz, and then set value in S2 is 720000.

• When X000 is ON, output PWM wave; When X000 is OFF, stop output. PMW output doesn't have pulse accumulation.

11-2. Precise Timing [STR]

1 Instruction List

Read and stop precise timing when precise timing is executed;

Precise timin	g[STR]		
16 bits instruction	-	32 bits instruction	STR
execution condition	edge activation	suitable models	XD3
hardware requirement	-	software requirements	-

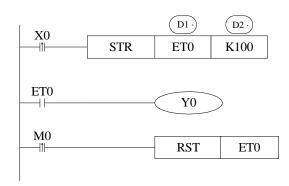
2. Operands

Operands	Function	Type

D1	Timer Number	bit
D2	specify timer's value or soft component's ID number	16 bits, BIN

3. Suitable Soft Components

	Operands	system constant constant											module		
Word		D*	· FD	ED	TD*	CD	k DX	DY	DM*	DS*	К/Н	ID	QD		
	D2	•	•		•	•					•				
	Operands			sys	tem										
Bit		X	Y	* S*	T*	C*]	On.m								
	D				•										
	D1				•										

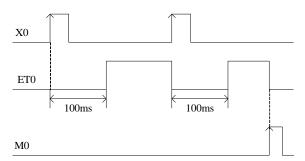

*Note: D includes D HD; TD includes TD HTD; CD includes CD HCD HSCD HSD; DM includes DM DHM;

DS includes DS DHS.

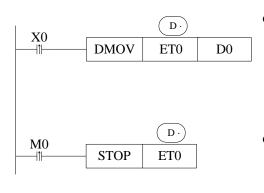
M includes M HM SM; S includes S HS; T includes T HT; C includes C HC.

Function and Action

《Precise timing》, 《Precise timing reset》



D! Timer's number. Range: ET0~ET30 (ET0, ET2, ET4.....all number should be even)

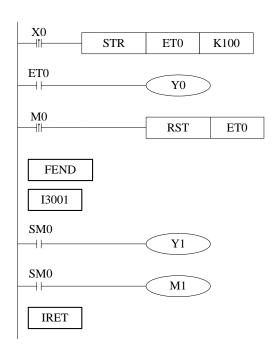

D2: Timing value

- Precise timer works in unit of 1ms.
- Precise timer 32 bits, the counting range is $0 \sim +2,147,483,647$.

- When executing STR, the timer will be reset before start timing.
- When X0 turns from OFF to ON, ET0 starts timing. ET0 will be reset and keep its value 100 when accumulation time reaches 100ms; If X0 again turns from OFF to ON, timer T600 turns from ON to OFF, restart to time, when time accumulation reaches 100ms, T600 reset again. See graph below:

«read the precise timing», «stop precise time»

- When X0 changes from OFF to ON, move the current precise timing value into TD600 immediately, it will not be affected by the scan cycle;
- When M0 changes from OFF to ON, execute STRS instruction immediately, stop precise timing and refresh the count value in TD600. It will not be affected by the scan cycle;

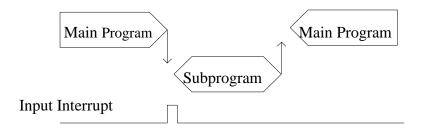

Precise Timing Interruption

- When the precise timing reaches the count value, it will generate an interruption tag, interruption subprogram will be executed.
- Can start the precise timing in precise timing interruption;
- Every precise timer has its own interruption tag, as shown below:

Interruption Tag corresponding to the Timer:

Timer's No	Interruption Tag	Timer's No	Interruption Tag
ET0	I3001	ET10	I3006
ET2	I3002	ET12	I3007

ET4	I3003		
ET6	I3004	ET22	I3012
ET8	I3005	ET24	I3013


When X0 changes from OFF to ON, ET0 will start timing. And ET0 reset when accumulation time is up to 100ms; meantime generate an interruption, the program jumps to interruption tag I3001 and execute the subprogram.

11-3. Interruption [EI], [DI], [IRET]

XD3 series PLC have interruption function, including external interruption and timing interruption two modes. By interruption function we can dispose some special programs. This function is not affected by the scan cycle.

11-3-1. External Interruption

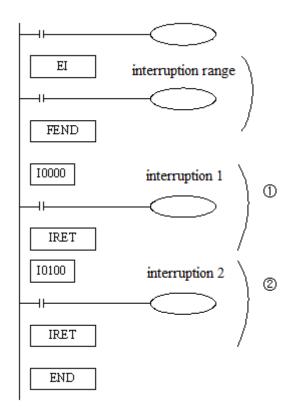
The input terminals X can be used to input external interruption. Each input terminal corresponds with one external interruption. The input's rising/falling edge can activate the interruption. The interruption subroutine is written behind the main program (behind FEND). After interruption generates, the main program stops running immediately, turn to run the correspond subroutine. After subroutine running ends, continue to execute the main program.

Note: The external interruption of XC series PLC cannot be activated by rising edge and falling edge at the same time; but XD3 series PLC supports rising edge and falling edge activation meantime.

External Interruption's Port Definition

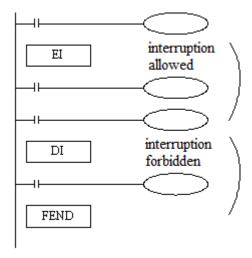
XD3-14 points

Input terminal	Rising Interruption	Disable the interruption instruction	
X2	10000	I0001	SM050
Х3	I0100	I0101	SM051
X4	I0200	I0201	SM052
X5	I0300	I0301	SM053
X6	I0400	I0401	SM054
X7	I0500	I0501	SM055

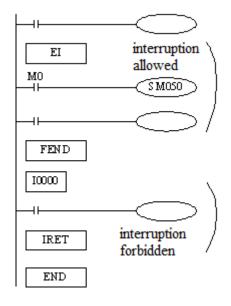

XD3-32/60 points

Input	Pointe	Disable the	
terminal	Rising Interruption	Falling interruption	interruption instruction
X2	10000	I0001	SM050
X3	I0100	I0101	SM051
X4	I0200	I0201	SM053
X5	I0300	I0301	SM054

X6	I0400	I0401	SM055
X7	I0500	I0501	SM056
X8	I0600	I0601	SM057
X9	I0700	I0701	SM058
X10	I0800	I0801	SM059
X11	I0900	I0901	SM060

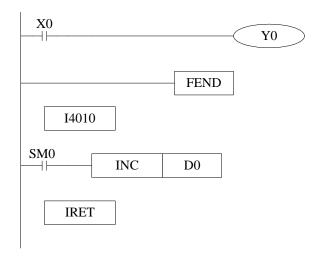

Interruption Instruction

Enable Interruption [EI], Disable Interruption [DI], Interruption Return [IRET]


- If use EI instruction to allow interruption, then when scanning the program, if interruption input changes from OFF to ON, then execute subroutine ①、②. Return to the original main program.
- Interruption pointer (I****) should be behind FEND instruction;
- PLC is usually on the status that allows interruption.

Interruption's Range Limitation

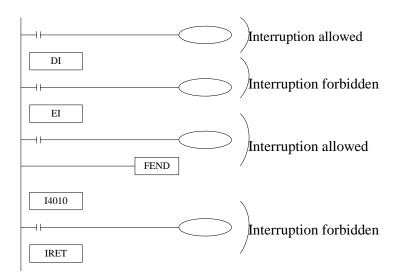
- By programming DI instruction, can set interruption disabled area;
- Allow interruption input between EI~DI
- If interruption forbidden is not required, please program only with EI, and program with DI is not required.


Disable the Interruption

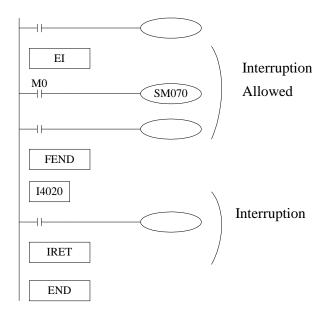
- Every input interruption is equipped with special relays (SM50~SM69) to disable interruption.
- In the left program, if use M0 to set SM50 "ON", then disable the interruption 0.

Function and Action

Under the circumstance that the main program execution cycle is very long, when you have to handle with special program or execute specific program every once in a while when program is scanning in sequence control, the timing interruption is very useful. It is not affected by PLC scan cycle and executes timing interruption subroutine every N ms.


- Timing interruption is open status in default, just like other interruption subroutines, it should be written behind the main program, starts with I40xx, ends with IRET.
- There are 20CH timing interruptions, representation: I40**~I59**('**'means interruption time; Unit is ms. E.g. I4010 means executing once the first timing interruption per 10ms.

Interruption No


		~ · ·
Interruption	Interruption	Description
No	forbidden	
	instructions	
I40**	SM070	
I41**	SM071	
I42**	SM072	
I43**	SM073	
I44**	SM074	"**" represents the time of timing interruption,
I45**	SM075	range is 1~99, unit is
I46**	SM076	"ms"
:	:	
:	:	
I59**	SM089	

Interruption range's limitation

- Timing interruption is usually on 'allow' status.
- Can set interruption allow and forbidden area with EI、DI instructions. As shown in below pictures, all timing interruptions are forbidden between DI and EI, and allowed beyond DI~EI.

Interruption Forbidden

- The first 3CH timing interruptions are equipped with special relays (SM070~SM079).
- In the left example, if use M0 to set SM070 "ON", then forbid timing interruption forbidden.

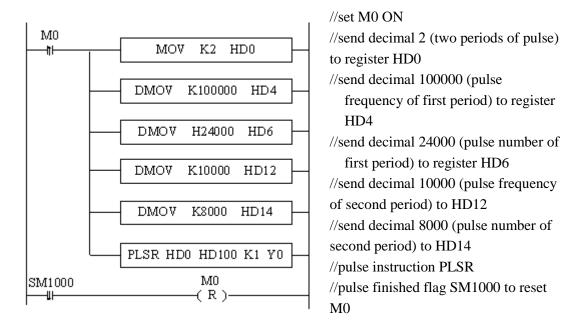
12 Application Example

This chapter mainly introduces main instructions, such as pulse output and Modbus communication instructions, and gives some examples.

12-1. Pulse output application


E.g. the following is the example of continuous high and low pulse output.

Parameters: parameters of stepping motor: step torque angle=1.8 degree/step, segments=40, pulse number of a round is 8000.


High frequency pulse: max frequency 100 KHz, total pulse number 24000 (3 rounds)

Low frequency pulse: max frequency 10 KHz, total pulse number 8000 (1round)

Note: set direction terminal of Y0 Y2, the accelerating and decelerating time both are 50MS.

Ladder programming:

Instruction form:

LDP M0 //set M0 ON

MOV K2 HD0 //send decimal 2 (two periods of pulse) to register HD0

DMOV K100000 HD4 //send decimal 100000 (pulse frequency of first period) to

register HD4

DMOV K24000 HD6 // send decimal 24000 (pulse number of first period) to

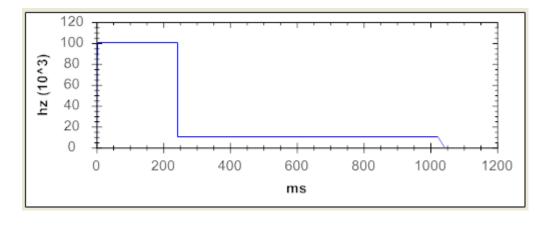
register HD6

DMOV K10000 HD12 //send decimal 10000 (pulse frequency of second period to

HD12

DMOV K8000 HD14 // send decimal 8000 (pulse number of second period) to

HD14

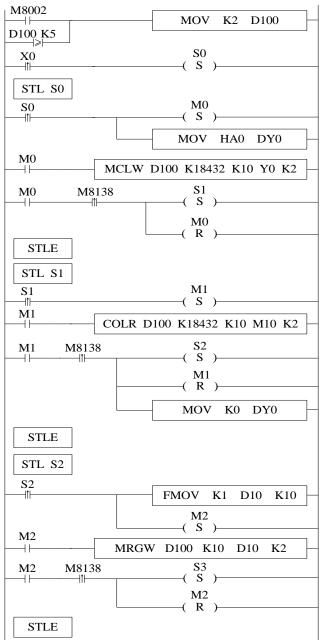

PLSR HD0 HD100 K1 Y0 //pulse instruction PLSR

LDF SM1000 // pulse finished flag SM1000

RST M0 // reset M0

Program description:

When PLC is STOP→RUN, set coil M0 ON, send pulse parameters to HD0—HD14, and execute PLSR instruction, the motor will run 3 rounds at high frequency and 1 round at low frequency; When SM1000 have falling edge, M0 will be reset and motor stop.

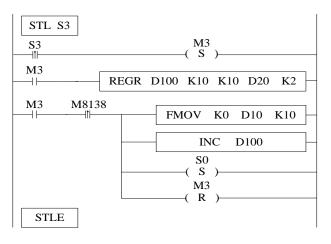

12-2. MODBUS Communication Application

E.g 1: the following program is write and read of Modbus communication between 1 master station and 3 slave stations.

Program operation:

- XC series: (1) Write Y0~~Y11 status of host station to 2# slave station Y0~~Y11;
 - (2) Read 2#slave station Y0~~Y11 to host station M10~~M19;
- XD series: (1) Write Y0~~Y11 status of host station to 2# slave station Y0~~Y11;
 - (2) Read 2#slave station Y0~~Y10 to host station M10~~M19;
 - (3) Write D10~~D19 to 2#slave station D10~~D19;
 - (4) Read 2#slave station D10~~D19 to host station D20~~D29;
 - (5) So are the 3#, 4# slave station

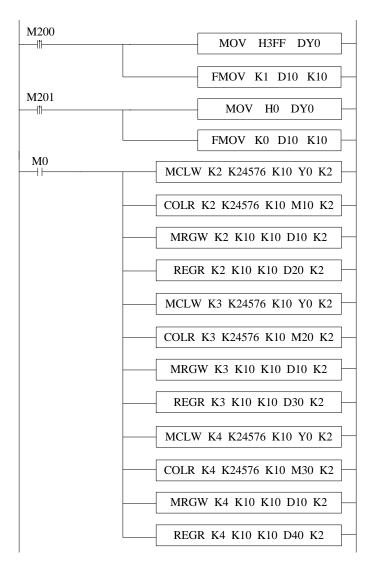
Here is the program contrast of XC and XD series modbus RTU communication. XC series communication program:



Send station#2 to D100

Start Flow S0

Set Y0~Y11 of host station ON; write the host state to 2#、 3#、 4# slave station Y0~Y11 in turn; and enter Flow S1 after communicating successfully.


M10~M19 in host station read 2#, 3#, 4#slave station Y0~~Y11 state in turn; Reset Y0~Y11 of host station and enter

Host station register D20~D29 read D10~D19 in 2#、3#、4#slave station; Reset host station D10~D19 after communicating successfully. Then station number increase 1, execute flow S0, and repeat above steps.

Modbus RTU instruction can be written in program directly, and the protocol station will queue Modbus communication request. Communication is another task which means users can write multiply Modbus RTU communication instructions together in the main program, and the instructions can be activated by one trigger condition. Then PLC will handle with this Modbus RTU communication instructions in turn, while XC series PLC errors if multiply communication instructions execute at the same time.

XD series program:

Set Y0~Y11 of host station and write 1 to D10~D19 if M200 is rising edge; RST Y0~Y11 of host station and write 0 to D10~D19 if M201 is rising edge.

write Y0~Y11 of host station to Y0~Y11 of 2#slave station; read Y0~Y11 of 2#slave station to M10~M19; write D10~D19 to D10~D19 of 2#slave station; read D20~D29 of 2#slave station to D20~D29 of host station,

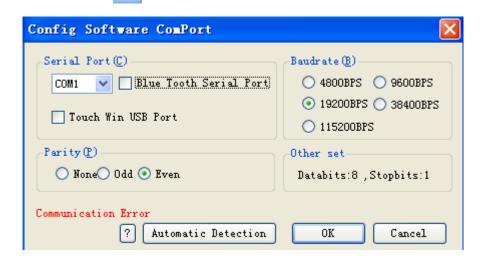
Command language:

LDP M200 //set M200

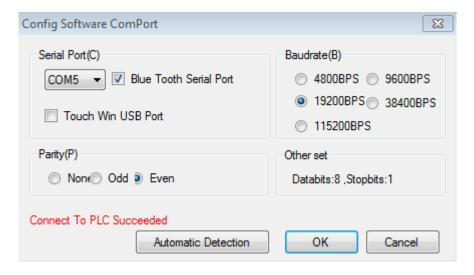
MOV H3FF DY0 //send Hexadecimal 3FF to Y0~Y15

FMOV K1 D10 K10 //send decimal 1 to register D10~D19

LDP M201		//set M201	l	
MOV H0	DY0	//send	decir	mal 0 to Y0~Y15
FMOV K0	D10 K1	0 //s	send	decimal 0 to register D10~D19
LD M0		//set M0		
MCLW K2 station Y0~Y	K24576K1 11	0 Y0	K2	//write Y0~Y11 status of host station to 2#slave
COLR K2 station M10~l	K24576K1 M19	0 M10	K2	//read status of 2#slave station Y0~Y11 to host
MRGWK2 station D10~I	K10 K1 D19	0 D10	K2	//write host station D10~D19 to 2#slave
REGR K2 station D20~I	K10 K1 D29	0 D20	K2	//read 2#slave station D10~D19 to host
MCLW K3 stationY0~Y1	K24576K1	0 Y0	K2	//write status of host station Y0~Y11 to 3#slave
COLR K3 station	K24576K1	0 M20	K2	//read status of 3#slave station Y0~Y11 to host
M20~M29				
MRGWK3	K10 K1	0 D10	K2	//write 3 to D10~D19 of host station
REGR K3 D30~D39 of I	K10 K1	0 D30	K2	//read D10~D19 status of 3#slave station to
MCLW K4 Y0~Y11 of 4#	K24576K1 #slave station	0 Y0	K2	//write the status of host station Y0~Y11 to
COLR K4 M30~M39 of	K24576K1	0 M30	K2	//read Y0~Y11 status of 4#slave station to
MRGWK4 of 4#slave sta	K10 K1	0 D10	K2	//write D10~D19 of host station to D10~D19
REGR K4 D40~D49 of	K10 K1 host station	0 D40	K2	//read D10~D19 of 4#slave station to


13 Common Questions and Answers

This chapter mainly introduces XD3 series PLC common questions and answers.


Q1: How PLC connect to PC?

A1:

a) If your PC is desktop computer, you can use our company special DVP or XVP cables to connect PC and PLC (Usually PORT1) as general commercial desktop computer has 9 needle serial port. After connecting DVP correctly, power on PLC, click 'Config Software ComPort , the following window will jump out:

Choose correct communication serial port according to your PC actual serial port.; baud rate selects 19200BPS, parity check selects even parity, 8 data bits, 1 stop bit; you can also click 'check' button directly in the window, and communication parameters will be selected by PLC itself. 'Connect PLC successfully' will be displayed on the left bottom of window as below:

Then it means that PLC has been connected to PC successfully!

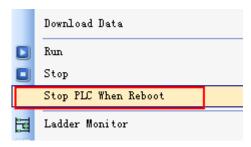
- b) Usage method of notebook PC with 9-pin serial port is the same with desktop PC's.
- c) If the notebook does not have 9-pin serial port, users can use USB converter to realize connection between PLC and notebook USB port. Make sure to install USB converter drive software (Xinje special USB converter module COM-USB is recommended, USB converter drive software can be downloaded on Xinje official website)!

Q2: Current PC is offline, unable connect with PLC?

A2:

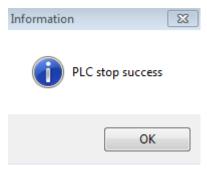
Several possible reasons:

- 1) Users may changed the communication parameters of PORT1 in PLC (Do not change Port1 communication parameters, or it may lead to connection between PC and PLC failure!)
- 2) USB converter driver software was installed incorrectly or USB converter cable is not good
- 3) PORT1 communication of PLC is damaged
- 4) The DVP download communication cable brand is not Xinje.


Solutions:

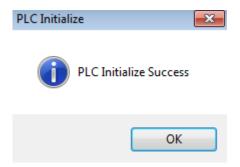
- 1) At first, change the DVP or XVP cable used to connect PC and PLC to Xinje special cable if it is not;
- 2) After confirming the connection cable is the Xinje special DVP cable and USB converter has been used, you can use it to try to connect desktop PC with 9-needle serial port to PLC. If the desktop PC can be connected correctly, please change the USB converter cable with higher performance or install the USB converter serial driver software again.
- 3) If PLC can not connect with desktop computer correctly either, you can use 'stop PLC when reboot' function to stop PLC and recover the PLC to factory setting, operating method is as follow:

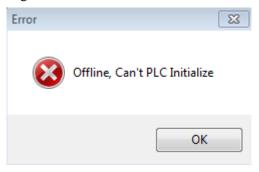
(a) Power on PLC and connect PLC by DVP cables, then click 'online' button on PLC editing software menu;


(b) Click 'Stop when PLC reboot' from the drop-down menu;

(c) Following window will jump out;

(d) By this time, cut off PLC power for 2-3s and power on again, then a 'PLC has been stopped successfully' window will normally jump out; if the window do not jump out after power on, try again a few times until the information window of successful stop jump out.


(e) Then click 'configure' button;


(f) Click 'Reset PLC' in the drop-down menu;

(g) By this time, 'Reset PLC' information window will jump out and it means that all steps of 'Stop when PLC reboot' have been finished.

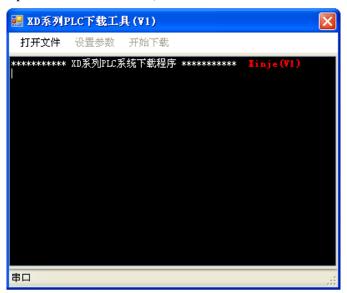
(h) If initialize PLC unsuccessfully after you trying a few times or the following window jumps out after clicking 'Reset PLC':

In both cases, use PLC system update tool to update PLC system, and PLC and PC will be connected successfully if system is updated (For more steps about system update, please refer to Q3 related content).

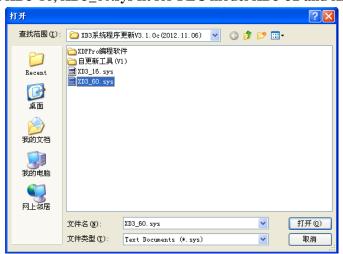
4) If update of the desktop computer with 9-pin serial port fails, it is very likely that PLC communication port is damaged, and please contact manufacturer or agent.

Q3: XD series PLC system upgrade

A3:


• When does PLC need update usually?

- 1) PLC software is in a continuous upgrade stage; if software and hardware version do not match, PLC will not support those upgraded function. About which PLC version the instruction support, please refer to instruction summary in this manual or appendix 2 'special function version requirement';
- 2) When users change the communication parameters, PLC and PC can not connect.
- 3) When users use 'program confidential download' function, however, forget the


password (Note: PLC program will disappear after system update!).

• How to update XD series PLC?

- 1) PLC update tool:
 - 'XD series PLC download program tool' and 'system file' (*.sys file)
- 2) Close all the programs which may occupy the serial port
- 3) Cut off the power of PLC, open the XD series update tool (if user use this tool at the first time, please open the enrollment first)

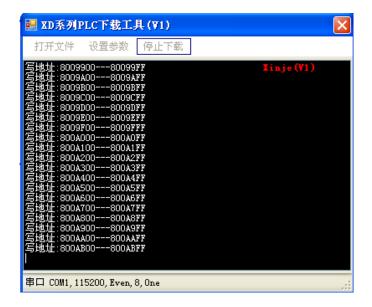
4) Click "Open File", choose the PLC model for updating. (Note: XD3_16.sys fit for PLC model XD3-16, XD3_60.sys fit for PLC model XD3-32 and XD3-60):

5) Set the parameters:

Click "set parameter", it will show the parameter window:

Note: set the com port, the baud rate is default setting, no need to change.

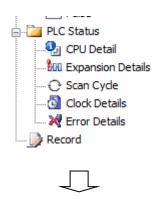
6) Click "download", the window will show below words:

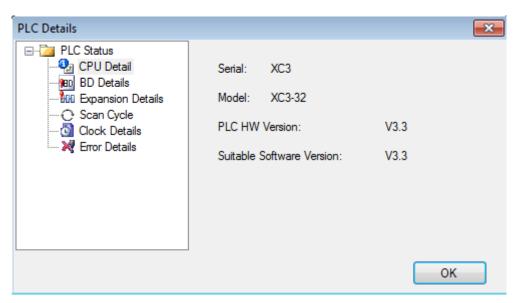


7) Power on the PLC, the update tool will show below words:

8) Cut off the power of PLC, connect the short jumper, then power on the PLC again.

9) PLC start to update, the updating will take few minutes.

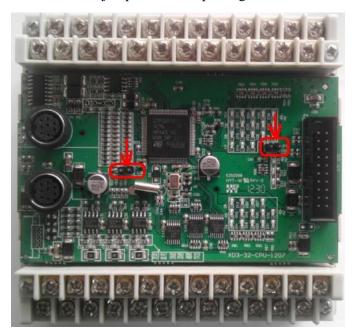




10) After finishing the update, cut off the PLC power, take off the short jumper, then power on the PLC again.

PLC hardware version


The PLC hardware version can be seen in "CPU detail" on the left window in XDPpro software (PLC online status)



Short jumper

XD3-16: please connect the two short jumpers before updating.

XD3-32: please connect the two short jumpers before updating.

XD3-60 has no short jumper.

Note:

- 1. Do not cut the power of PLC when it is updating. If it show the error "send data failed, ID not match...) please contact us for help.
- 2. The PLC program will be deleted after updating.

Q4: The bit soft component function.

A4:

Continuous 16 coils consist of a word, E.g. DM0 a word consist of 16 coils (bits) M0~M15 is as below:

DM0:

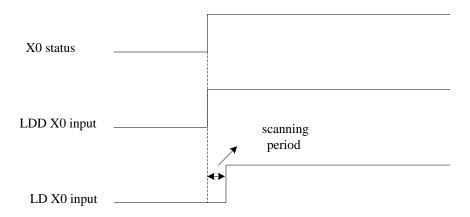
M15	M14	M13	M12	M11	M10	M9	M8	M7	M6	M5	M4	M3	M2	M1	M0

We can use bit in the register directly.

Example 1:

The other mode is bit operation of fixed register. E.g. D0.0 is the first bit of 16 bits in register D0. Similarly, D0.1 is the second bit and so on, as shown below:

D0:


Similarly, we can use bit in register D0.

Q5: What's the use of execution instruction LDD/OUTD etc?

A5:

When PLC executes program, state of input point state will map to image register. From then on, PLC will refresh input state at the beginning of every scan cycle; if we use LDD instruction, then the state of input point will not need map to image register; the same with output point (OUTD).

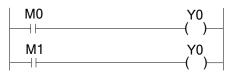
LDD/OUTD instruction usually apply to the occasion that I/O need refresh immediately, which makes the state of input and output avoid the influence of the scan cycle.

Input point X0 sequence chart of LDD and LD

Q6: Why the output LED keeps flashing when using ALT instruction?

A6:

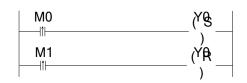
For ALT and many calculation instructions, these instructions will execute every scanning period when the condition is fulfilled (for example, the condition is normal ON coil). We recommend that the condition is rising edge or falling edge.


Q7: Why the M and Y cannot output sometime?

A7:

Output mainly has two ways: 1. OUT instruction; 2. SET instruction. The coil will keep outputting if there is no RST instruction.

Usually in the program, one coil M or Y should use the same output way. Otherwise, the coil cannot output.


For example:

M0 is ON, M1 is OFF, Y0 cannot output M0 is OFF, M0 is ON, Y0 will output Reason: two different coils drive the same output coil

Y0 will be ON for one scanning period

M0 is ON, Y will keep outputting

M1 is ON, Y0 is OFF

Q8: Check and change the button battery in the PCB of PLC

A8:

The rated voltage of button battery is 3V. The voltage can be measured by multimeter. If the value of power-loss retentive register is very large, it means the battery is low. Please change the button battery.

Q9: Communicate with SCADA software

A9:

If there is no choice for XD series PLC in SCADA software, please choose Modbus-RTU protocol and communicate through RS485 port. Please refer to XD series PLC instruction manual chapter 7.

Q10: MODBUS Communication

A10:

1. Make sure the RS485 connection is correct. (Terminal A and B on the PLC). Please modify the port 2 parameters through SFD610 to SFD614.

Method 1: set the parameters through SFD register

Connect PLC and XDPpro software, set the SFD610 to SFD614 through free monitor function. Then restart the PLC again.

Please set the parameters according to different device. Make sure the modbus address and function code. Some device will show setting frequency after sending running signal.

2. Set the parameters through control panel

Please refer to XD series PLC instruction manual chapter 7.

Q11: The LED light of XD series PLC (PWR/RUN/ERR)

A11:

LED light	Problem	Solution
	1. I/O PCB has short circuit	Check I/O terminal, if there is
PWR shining, other	2 1-4 2-4-1-4-5-4-2487	short circuit. If the load is too
LED off.	2. load is too large for 24V	large for 24V power supply.
	3. not click RUN for program	Make sure the program is
	3. not enem real for program	running inside PLC. Contact us

		for help.
Three LED all OFF	PLC input power supply has short circuit PLC power PCB damaged	Check the input power supply of PLC. Contact us for help.
PWR and ERR light	 PLC input voltage is not stable there is dead loop in the program PLC system has problem 	Check the power supply voltage, check if there is dead loop in the program. Update the hardware of PLC. Contact us for help.

Q12: the result is not correct when doing floating operation

A12:

Please transform the integer to floating number. For example: EDIV D0 D2 D10. If the value of D0 and D2 is integer, the result will has error (D10). Please use below instruction to transform the integer to floating number.

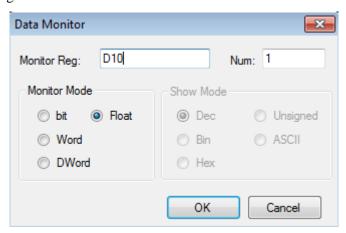
```
M0

FLT D0 D6

FLT D2 D8

EDIV D6 D8 D10
```

Q13: Why the floating numbers become messy code in online ladder monitor window?


A13:

As the floating number cannot be displayed in online ladder monitoring, please monitor the floating number in free monitor function.

Open XDPpro software, click online/free monitor. The following window will pop up:

Click "add" in the window, the following window will pop up. Set the monitor mode to "float". Monitor register set to D10. Then click ok.

Q14: Why data errors after using DMUL instructions?

A14:

DMUL operation instruction is 32 bit*32 bit=64 bit operation, the result occupies 4 words, such as: EMUL D0 D2 D10, two multiplier both are 32bit (D1,D0) and (D3, D2), the result is 64 bit (D13, D12, D11, D10), so D10~D13 will be occupied. If these data registers are used latter, operation will error.

Q15: Why the output point action errors after PLC running for a while?

A15:

It's possible that output terminal is loose, please check.

Q16: Why expansion module does not work while power indicator is ON?

A16:

It is likely the connection of module strips and PLC pins or CPU is not good. Compare the CPU and expansion in cross contrast way to find the problems.

Q17: Why pulse do not output when we get through the conduction condition?

A17:

First, make sure your PLC has pulse control function and output is transistor type.

Second, check if pulse instruction (absolute or relative instruction) and parameters are OK.

Third, check if there is double coils output of one pulse output terminal in program. Please refer to Section 6-4 'notice' in Chapter 6.

Q18: Why the corresponding temporary register still not count when the PLC input terminal of HSC has been connected correctly?

A18:

To realize HSC function, we not only need connect the high speed pulse to HSC terminal, but also need write corresponding HSC program according to function instructions; For more details please refer to Chapter 5 'high speed counter' in this manual.

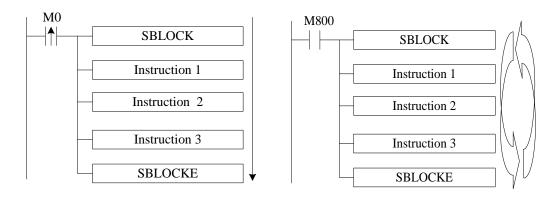
Q19: What's PLC output terminal A, B?

A19:

PLC output terminal A、B are RS485 terminals of PORT2 on PLC. It's the same communication port with the round port of PORT2 which is RS232 port.

Note: PORT2 communication port RS232 and RS485 can not be used simultaneously.

Q20: What's the advantage of C language compared with ladder diagram?


A20:

- (1) XD series PLC supports all C language function;
- (2) Under any download mode, C language function parts can not be uploaded;
- (3) C language function block can be called between different files.

Q21: What's the difference of sequence function BLOCK trigger condition: rising edge triggered and normally closed conduction?

A21:

Rising edge triggered: when the condition is triggered, block executes in order from top to bottom; Normally closed conduction: when the condition is triggered, Block will execute in order from top to bottom, return to the top and execute again until the normally closed conduction breaks off. The cycle stops when the last one finished.

From up to down, run the instruction one by one

from up to down, cyclic run the instruction

Q22: what's the advantage that XD series PLC replaces DVP download cable with Bluetooth?

A22:

XD series PLC Bluetooth function can perform PLC program download and upload, monitor and Twin configuration software online simulation. The Bluetooth can replace the cable to transfer the data.

Note: COM-Bluetooth only fit for XINJE
PLC.

Wireless transferring is convenience than cable for short distance

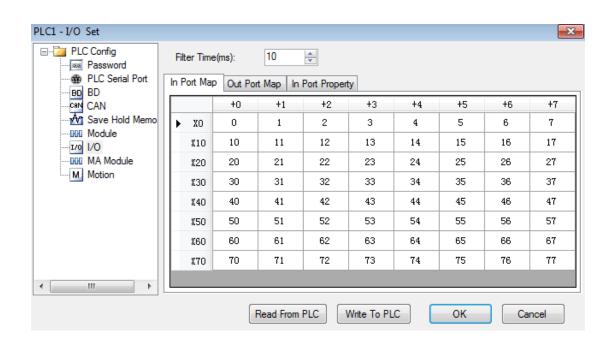
PC

Control cabinet installed XD

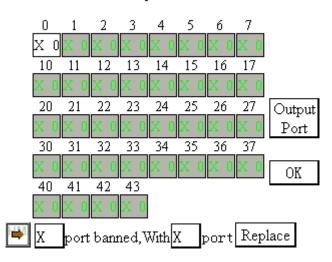
series PLCand COM-Bluetooth

Q23: XD series PLC program several download modes and each mode's feature?

A23:


XD series PLC have three program download modes:

- **General download mode:** Under this mode, users can download program from computer to PLC or upload program from PLC to computer very conveniently, so we usually use this mode when we debug devices.
- Password download mode: If you set a password for PLC, you need input correct password when you upload program in PLC to computer. In the password advanced options, you still can check 'decrypt before program download' function (Note: this operation is dangerous. If you forget password, your PLC will be locked!) . If you want to protect your program and still want to upload the program to use by yourself, you can use this mode.
- Confidential download mode: Under this mode, once users download the
 program to PLC, the program will not be uploaded anyway. This mode can save
 more PLC internal resources, increase PLC capacity and improve download speed.


Q24: PLC I/O terminal exchanging

A24:

Sometime the PLC I/O terminals are broken. User don't have to change the program, PLC I/O terminal exchanging function can solve the problem. User can exchange the terminal through XINJE Touchwin HMI. Open Touchwin software, jump to screen no. 60004 (X terminals) or screen no. 60005 (Y terminals) to set the I/O exchanging.

XC PLC Input Status

Touchwin HMI I/O terminal exchanging screen

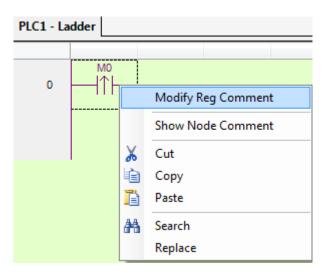
Q25: What's the function of XD series PLC indirect addressing?

A25:

Adding offset suffix after coils and data registers (Such as X3[D100], M10[D100], D0[D100]) can realize indirect addressing function; such as D100=9, X3[D100] represents X14, M10[D100] represents M19, D0[D100] represents D9; It usually applies to large number of bit and register operation and storage.

Q26: How does XD series PLC connect to the network?

A26:

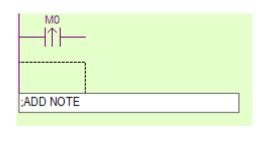

XD series PLC can connect to network by Xinje T-BOX, G-BOX, Z-BOX expansion modules or expansion BD boards which have their own communication characteristics. Details please refer to the user manual of communication module or BD board.

Q27: how to add soft element and line note in XDppro software?

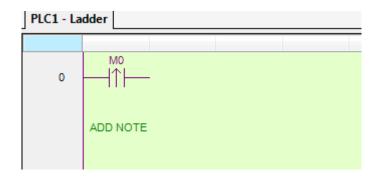
A27:

• Soft element note

Open XDPpro software, and move the mouse to the corresponding soft element and right click the mouse, then menu will pop out:



Click "Modify reg comment" to add element notes in below window:



• Line note

Line note starts from ";". Double click the line, then input semicolon and the contents.

Q28: do not have clock function?

A28:

XD series PLC clock function is optional, and if you want to buy the PLC with clock function, please confirm when purchasing. Otherwise, the default PLC when it leaves factory does not have clock function.

If the PLC has clock function, then please check whether the value in register SD13-SD19 is decimal, if not, transform it to decimal by instruction BIN or TRD.

Appendix Special Soft Element Schedules

Appendix mainly introduces the functions of XD3 series PLC special soft element, data register, FlashROM and the address distribution of expansions for users to search.

Appendix 1. Special Auxiliary Relay Schedule

Initial Status (SM0-SM3)

ID	Function	Description		
SM000	Coil ON when running	RUN Input	SM000 keeps ON when PLC running	
SM001	Coil OFF when running	SM0 SM1	SM001 keeps OFF when PLC running	
SM002	Initial positive pulse coil	SM2	SM002 is ON in first scan cycle	
SM003	Initial negative pulse coil	SM3 Scan Scan period	SM003 is OFF in first scan cycle	

Clock (SM11-SM14)

ID	Function	Description
SM011	10ms frequency cycle	5ms 3

SM012	100ms frequency cycle	50ms > 50ms > 50ms
SM013	1s frequency cycle	0.5s 0.5s
SM014	1min frequency cycle	30s 30s

Mark (SM20-SM29)

ID	Function	Description
SM020	Zero bit	SM020 is ON when plus/minus operation result is 0
SM021	Borrow bit	SM021 is ON when minus operation overflows
SM022	Carry bit	SM022 is ON when plus operation overflows

PC Mode (SM32-SM34)

ID	Function	Description
SM032	Retentive register reset	When SM032 is ON, ON/OFF mapping memory of HM、HS and current values of HT、HC、HD will be reset.
SM033	Clear user's program	When SM033 is ON, all PLC user's program will be cleared.
SM034	All output forbidden	When SM034 is ON, all PLC external contacts will be set OFF.

Stepping Ladder

ID	Function	Description
SM040		

Interruption (SM50-SM80)

ID	Address	Function	Description
SM050	I0000/I0001	Forbid input interruption 0	
SM051	I0100/I0101	Forbid input interruption 1	After executing EI instruction,
SM052	I0200/I0201	Forbid input interruption 2	the input interruption couldn't act independently when M
SM053	I0300/I0301	Forbid input interruption 3	acts, even if the interruption is allowed.
SM054	I0400/I0401	Forbid input interruption 4	E.g.: when SM050 is ON, I0000/I0001 is forbidden.
SM069	I1900/I1901	Forbid input interruption 19	
SM070	I40**	Forbid timing interruption 0	
SM071	I41**	Forbid timing interruption 1	After executing EI instruction,
SM072	I42**	Forbid timing interruption 2	the timing interruption couldn't act independently
SM073	I43**	Forbid timing interruption 3	when M acts, even if the interruption is allowed.
SM074	I44**	Forbid timing interruption 4	
•••••			
SM089	I59**	Forbid timing interruption 19	
SM090		Forbid all interruptions	Forbid all interruptions

High Speed Pulse (SM140-SM199)

ID	Function	Description	
SM1000	'Sending pulse' flag	SM1000 will be ON when sending the pulse	
SM1001	Direction flag	SM1001 value being 1 stands for positive direction and corresponding port is ON	
SM1002	Overflow flag of accumulated pulse number	SM1002 value will be 1 when accumulated pulse number overflows.	
SM1003	Overflow flag of pulse equivalent	SM1003 value will be 1 when pulse equivalent overflows	PULSE 1
SM1004			_ TOLSE_T
SM1005			
SM1006			
SM1007			_
SM1008			_
SM1009			_
SM1010	Pulse error flag	SM1010 will be ON when pulse errors	-
SM1020	'Sending pulse' flag	SM1020 will be ON when sending the pulse	
SM1021	Direction flag	SM1021 value being 1 stands for positive direction and corresponding port is ON	
SM1022	Overflow flag of accumulated pulse number	SM1022 value will be 1 when accumulated pulse number overflows.	DITI CE 2
SM1023	Overflow flag of pulse equivalent	SM1023 value will be 1 when pulse equivalent overflows	PULSE_2
SM1024			-
SM1025			-
SM1026			-
SM1027			_

SM1028			
SM1029			
SM1030	Pulse error flag	SM1030 will be ON when pulse errors	
SM1040	'Sending pulse' flag	SM1040 will be ON when sending the pulse	
SM1041	Direction flag	SM1041 value being 1 stands for positive direction and corresponding port is ON	
SM1042	Overflow flag of accumulated pulse number	SM1042 value will be 1 when accumulated pulse number overflows.	
SM1043	Overflow flag of pulse equivalent	SM1043 value will be 1 when pulse equivalent overflows	DIN GE 2
SM1044			PULSE_3
SM1045			
SM1046			
SM1047			
SM1048			
SM1049			
SM1050	Pulse error flag	SM1050 will be ON when pulse errors	
SM1060	'Sending pulse' flag	SM1060 will be ON when sending the pulse	
SM1061	Direction flag	SM1061 value being 1 stands for positive direction and corresponding port is ON	
SM1062	Overflow flag of accumulated pulse number	SM1062 value will be 1 when accumulated pulse number overflows.	PULSE_4
SM1063	Overflow flag of pulse equivalent	SM1063 value will be 1 when pulse equivalent overflows	
SM1064			
SM1065			
SM1066			

SM1067			
SM1068			
SM1069			
SM1070	Pulse error flag	SM1070 will be ON when pulse errors	
SM1080	'Sending pulse' flag	SM1080 will be ON when sending the pulse	
SM1081	Direction flag	SM1081 value being 1 stands for positive direction and corresponding port is ON	
SM1082	Overflow flag of accumulated pulse number	SM1082 value will be 1 when accumulated pulse number overflows.	PULSE_5
SM1083	Overflow flag of pulse equivalent	SM1083 value will be 1 when pulse equivalent overflows	
SM1084			
SM1085			
SM1086			
SM1087			
SM1088			
SM1089			
SM1090	Pulse error flag	SM1090 will be ON when pulse errors	
SM1100	'Sending pulse' flag	SM1100 will be ON when sending the pulse	
SM1101	Direction flag	SM1101 value being 1 stands for positive direction and corresponding port is ON	
SM1102	Overflow flag of accumulated pulse number	SM1102 value will be 1 when accumulated pulse number overflows.	PULSE_6
SM1103	Overflow flag of pulse equivalent	SM1103 value will be 1 when pulse equivalent overflows	
SM1104			
SM1105			

SM1107 SM1108 SM1109 M1110 Pulse error flag SM1110 will be ON when pulse errors SM1120 'Sending pulse' flag pulse SM1121 Direction flag SM1121 value being 1 stands for positive direction and corresponding port is ON SM1122 Direction flag SM1122 value will be 1 when accumulated pulse number overflows. SM1123 Overflow flag of pulse equivalent equivalent overflows SM1124 SM1125 SM1126 SM1127 SM1128 SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1140 Direction flag of SM1141 value being 1 stands for positive direction and corresponding port is ON PULSE_8 SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. PULSE_8 PULSE_8	SM1106			
SM1109 SM1110 will be ON when pulse errors	SM1107			
M1110 Pulse error flag SM1110 will be ON when pulse errors SM1120 'Sending pulse' flag SM1120 will be ON when sending the pulse SM1121 Direction flag SM1121 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. SM1122 value will be 1 when accumulated pulse number overflows. Overflow flag of SM1123 value will be 1 when pulse equivalent overflows SM1123 value will be 1 when pulse equivalent overflows SM1124 SM1125 SM1126 SM1126 SM1129 SM1130 will be ON when pulse errors SM1129 SM1130 Pulse error flag SM1130 will be ON when sending the pulse SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. PULSE_8 SM1142 value will be 1 when accumulated pulse number overflows.	SM1108			
SM1120 'Sending pulse' flag SM1121 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. SM1122 value will be 1 when accumulated pulse number overflows. SM1123 value will be 1 when pulse equivalent overflows SM1124 SM1125 SM1126 SM1127 SM1126 SM1128 SM1129 SM1130 will be ON when pulse errors SM1129 SM1130 Pulse error flag SM1130 will be ON when sending the pulse SM1140 'Sending pulse' flag SM1141 value being 1 stands for positive direction and corresponding port is ON SM1141 Direction flag of accumulated pulse number overflows. SM1142 value will be 1 when accumulated pulse number overflows. PULSE_7	SM1109			
SM1120 'Sending pulse' flag pulse SM1121 Direction flag SM1121 value being 1 stands for positive direction and corresponding port is ON SM1122 Overflow flag of accumulated pulse number overflows. SM1123 Overflow flag of pulse equivalent SM1123 value will be 1 when pulse equivalent overflows SM1124 SM1125 SM1125 SM1126 SM1127 SM1128 SM1128 SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON SM1141 Overflow flag of accumulated pulse number overflows. PULSE_8	M1110	Pulse error flag	SM1110 will be ON when pulse errors	
SM1121 Direction flag direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. SM1122 value will be 1 when accumulated pulse number overflows. SM1123 Pulse equivalent equivalent overflows SM1124 SM1125 SM1126 SM1127 SM1128 SM1129 SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. SM1142 value will be 1 when accumulated pulse number overflows.	SM1120	'Sending pulse' flag	_	
accumulated pulse number SM1122 value will be 1 when accumulated pulse number overflows. SM1123 value will be 1 when pulse equivalent pulse equivalent overflows SM1124 SM1125 SM1126 SM1127 SM1128 SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. PULSE_8 SM1142 value will be 1 when accumulated pulse accumulated pulse number overflows.	SM1121	Direction flag		
SM1123 pulse equivalent equivalent overflows SM1124 SM1125 SM1126 SM1127 SM1128 SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. PULSE_8 PULSE_7	SM1122	accumulated pulse		
SM1125 SM1126 SM1127 SM1128 SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. PULSE_8	SM1123	_	_	PULSE 7
SM1126 SM1127 SM1128 SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. PULSE_8	SM1124			TODSE_/
SM1127 SM1128 SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. PULSE_8	SM1125			
SM1128 SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. PULSE_8	SM1126			
SM1129 SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse SM1142 value will be 1 when accumulated pulse number overflows. PULSE_8	SM1127			
SM1130 Pulse error flag SM1130 will be ON when pulse errors SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse SM1142 value will be 1 when accumulated pulse number overflows. PULSE_8	SM1128			
SM1140 'Sending pulse' flag SM1140 will be ON when sending the pulse SM1141 Direction flag SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse SM1142 value will be 1 when accumulated pulse number overflows. PULSE_8	SM1129			
SM1140 'Sending pulse' flag pulse SM1141 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse number overflows. SM1142 value will be 1 when accumulated pulse pulse number overflows.	SM1130	Pulse error flag	SM1130 will be ON when pulse errors	
SM1141 Direction flag direction and corresponding port is ON Overflow flag of accumulated pulse SM1142 value will be 1 when accumulated pulse number overflows. PULSE_8	SM1140	'Sending pulse' flag		
SM1142 value will be 1 when accumulated pulse number overflows. PULSE_8	SM1141	Direction flag	_	
Overflow flog of CM1142 value will be 1 when miles	SM1142	accumulated pulse		PULSE_8
SM1143 value will be 1 when pulse equivalent overflows	SM1143	Overflow flag of pulse equivalent	SM1143 value will be 1 when pulse equivalent overflows	
SM1144	SM1144			

SM1146 SM1147 SM1148 SM1149 SM1150 Pulse error flag SM1150 will be ON when pulse errors SM1160 'Sending pulse' flag SM1160 will be ON when sending the pulse SM1161 Direction flag SM1161 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse accumulated pulse number SM1162 value will be 1 when accumulated pulse number overflows.	
SM1148 SM1149 SM1150 Pulse error flag SM1150 will be ON when pulse errors SM1160 'Sending pulse' flag SM1160 will be ON when sending the pulse SM1161 Direction flag SM1161 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse SM1162 value will be 1 when accumulated	
SM1148 SM1149 SM1150 Pulse error flag SM1150 will be ON when pulse errors SM1160 'Sending pulse' flag SM1160 will be ON when sending the pulse SM1161 Direction flag SM1161 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse SM1162 value will be 1 when accumulated	
SM1149 SM1150 Pulse error flag SM1150 will be ON when pulse errors SM1160 'Sending pulse' flag SM1160 will be ON when sending the pulse SM1161 Direction flag SM1161 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse SM1162 value will be 1 when accumulated	
SM1150 Pulse error flag SM1150 will be ON when pulse errors SM1160 will be ON when sending the pulse SM1161 Direction flag SM1161 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse SM1162 value will be 1 when accumulated	
SM1160 'Sending pulse' flag SM1160 will be ON when sending the pulse SM1161 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse SM1162 value will be 1 when accumulated	
SM1160 'Sending pulse' flag pulse SM1161 value being 1 stands for positive direction and corresponding port is ON Overflow flag of accumulated pulse SM1162 value will be 1 when accumulated	
SM1161 Direction flag direction and corresponding port is ON Overflow flag of accumulated pulse SM1162 value will be 1 when accumulated	
accumulated pulse SM1162 value will be 1 when accumulated	
■ I	
SM1163 value will be 1 when pulse equivalent equivalent overflows	JLSE 9
SM1164	LSL_)
SM1165	
SM1166	
SM1167	
SM1168	
SM1169	
SM1170 Pulse error flag SM1170 will be ON when pulse errors	
SM1180 will be ON when sending the pulse	
SM1181 value being 1 stands for positive direction and corresponding port is ON PU	ULSE-
Overflow flag of accumulated pulse SM1182 value will be 1 when accumulated pulse number overflows.	_10
SM1183 Overflow flag of pulse equivalent SM1183 value will be 1 when pulse equivalent overflows	

SM1184			
SM1185			
SM1186			
SM1187			
SM1188			
SM1189			
SM1190	Pulse error flag	SM1190 will be ON when pulse errors	

Sequence Function BLOCK (SM240-SM339)

ID	Function	Description
SM300	BLOCK1 running flag	SM300 will be ON when block1 is running
SM301	BLOCK2 running flag	SM301 will be ON when block2 is running
SM302	BLOCK3 running flag	SM302 will be ON when block3 is running
SM303	BLOCK4 running flag	SM303 will be ON when block4 is running
SM304	BLOCK5 running flag	SM304 will be ON when block5 is running
SM305	BLOCK6 running flag	SM305 will be ON when block6 is running
SM396	BLOCK97 running flag	SM396 will be ON when block97is running
SM397	BLOCK98 running flag	SM397 will be ON when block98 is running
SM398	BLOCK99 running flag	SM398 will be ON when block99 is running
SM399	BLOCK100 running flag	SM399 will be ON when block100 is running

Error check (SM400-SM413)

ID	Function	Description
SM400	I/O error	ERR LED keeps ON, PLC don not run and output, check when power on
SM401	Expansion module communication error	
SM402	BD communication error	
SM405	No user program	Internal code check wrong
SM406	User program error	Implement code or configuration table check wrong
SM407	SSFD check error	ERR LED keeps ON, PLC don not run and output, check when power on
SM408	Memory error	Can not erase or write Flash
SM409	Calculation error	
SM410	Offset overflow	Offset exceeds soft element range
SM411	FOR-NEXT overflow	Reset when power on or users can also reset by hand.
SM412	Invalid data fill	When offset of register overflows, the return value will be SM372 value
SM413		

Error Message (SM450-SM452)

ID	Function	Description
SM450	System error check	
SM451		
SM452		

Expansion Modules, BD Status (SM500)

ID	Function	Description
SM500	Module status read is finished	

Communication (SM130-SM1319)

	ID	Function	Description
	SM130	Accurate receipt flag	
	SM131	Error receipt flag	
	SM132		
	SM133		
COM1	SM134		
	SM135		
	SM136		
	SM137		
	SM138		
	SM139		

	SM140	Accurate receipt flag
	SM141	Error receipt flag
	SM142	
	SM143	
	SM144	
COM2	SM145	
	SM146	
	SM147	
	SM148	
	SM149	
	DIVITY	

Appendix 2. Special Data Register Schedule

Clock (SD010-SD019)

ID	Function	Description
SD010	Current scan cycle	100us, us is the unit
SD011	Min scan time	100us, us is the unit
SD012	Max scan time	100us, us is the unit
SD013	Second (clock)	0~59 (BCD code)
SD014	Minute (clock)	0~59 (BCD code)
SD015	Hour (clock)	0~23 (BCD code)
SD016	Day (clock)	0~31 (BCD code)
SD017	Month (clock)	0~12 (BCD code)
SD018	Year (clock)	2000~2099 (BCD code)
SD019	Week (clock)	0 (Sunday) ~6 (Saturday) (BCD code)

Flag (SD020-SD031)

ID	Function	Description
SD020	Information of type	
SD021	Information of type	
:		
SD030	Information of type	
SD031	Information of type	

Step ladder (SD040)

ID	Function	Description
SD40	Flag of the executing process S	

High Speed Counting (SD100-SD109)

ID	Function	Description	
SD100	Current segment (No. n segment)		HSC00
SD101	Current segment (No. n segment)		HSC02
SD102	Current segment (No. n segment)		HSC04
SD103	Current segment (No. n segment)		HSC06
SD104	Current segment (No. n segment)		HSC08
SD105	Current segment (No. n		HSC10

	segment)	
SD106	Current segment (No. n segment)	HSC12
SD107	Current segment (No. n segment)	HSC14
SD108	Current segment (No. n segment)	HSC16
SD109	Current segment (No. n segment)	HSC18

High Speed Pulse (SD1000-SD1099)

ID	Function	Description	
SD1000	Current segment (No. n segment)		
SD1001			
SD1002	Low 16 bits of accumulated pulse number (the unit is the pulse number)		
SD1003	High 16 bits of accumulated pulse number		
SD1004	The low 16 bits of accumulated pulse number		PULSE_1
SD1005	High 16 bits of accumulated pulse number		
SD1006	Low 16 bits of current output frequency		
SD1007	high 16 bits of current output frequency		

SD1008	Low 16 bits of current output frequency(The unit is pulse equivalent)		
SD1009	High 16 bits of current output frequency		
SD1010	Wrong Pulse message	1: Pulse data block error 2: Equivalent mode: pulse amount/turn, amount/ turn of movement is 0 3:Code of system parameters block error 4:Pulse data block exceeds max limit 10:Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13: Directions of zero return speed and zero auxiliary speed differ	
SD1011	Pulse data block error		
SD1020	Current segment(No. n segment)		
SD1021			
SD1022	Low 16 bits of accumulated pulse number (the unit is pulse number)		
SD1023	High 16 bits of accumulated pulse number		PULSE_2
SD1024	Low 16 bits of accumulated pulse number		
SD1025	High 16 bits of accumulated pulse number		

SD1026	Low 16 bits of current output frequency(the unit is pulse number)		
SD1027	High 16 bits of current output frequency(the unit is pulse number)		
SD1028	Low 16 bits of current output frequency(the unit is pulse equivalent)		
SD1029	High 16 bits of current output frequency(the unit is pulse equivalent)		
SD1030	Wrong Pulse message	1: Pulse data block error 2: Equivalent mode: pulse amount/turn, amount/ turn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	
SD1031	Code of error pulse block		
SD1040	Current segment(No. n segment)		
SD1041			
SD1042	Low 16 bits of accumulated pulse number (the unit is pulse number)		PULSE_3
SD1043	High 16 bits of accumulated pulse number (the unit is pulse number)		

SD1050 Wrong Pulse message 4: Pulse data block exceeds max limit 10: Zero return do not set near	
SD1050 Wrong Pulse message limit	
SD1050 Wrong Pulse message limit	
SD1030 Wrong Fulse message	
10: Zero return do not set near	
10: Zero return do not set near	
10: Zero return do not set near	
10: Zero return do not set near	
10: Zero return do not set near	
10. Zero return do not set near	
point signal	
point signal	
11. Speed of zero return is 0	
11: Speed of zero return is 0	
12. Crawling speed of zero return	
12: Crawling speed of zero return	
is 0	
IS U	
13 Direction of zero return speed	
13 Direction of zero return speed	
and zero auxiliary speed	
and zero auxinary speed	
SD1051 Code of error pulse block	
SD1051 Code of error pulse block	
SD1060 Current segment(No. n segment)	
	ULSE_4
SD1061	
ווייועמ	I

SD1062 Low 16 bits of accumulated pulse number (the unit is pulse number) SD1063 High 16 bits of accumulated pulse number (the unit is pulse number) SD1064 Low 16 bits of accumulated pulse number(the unit is pulse equivalent) SD1065 High 16 bits of accumulated pulse number(the unit is pulse equivalent) SD1066 Low 16 bits of current output frequency(the unit is pulse number) SD1067 High 16 bits of current output frequency(the unit is pulse number) SD1068 equivalent) Low 16 bits of current output frequency(the unit is pulse number) SD1069 frequency(the unit is pulse equivalent) SD1069 frequency(the unit is pulse equivalent) 1: Pulse data block error 2: Equivalent mode: pulse amount/turn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed				
SD1063 number (the unit is pulse number) SD1064 Low 16 bits of accumulated pulse number(the unit is pulse equivalent) SD1065 High 16 bits of accumulated pulse number(the unit is pulse equivalent) SD1066 Low 16 bits of current output frequency(the unit is pulse number) SD1067 High 16 bits of current output frequency(the unit is pulse number) Low 16 bits of current output frequency(the unit is pulse number) SD1068 equivalent) Low 16 bits of current output frequency(the unit is pulse equivalent) High 16 bits of current output frequency(the unit is pulse equivalent) 1: Pulse data block error 2: Equivalent mode: pulse amount/turn amount/turn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	SD1062	_		
SD1065 High 16 bits of accumulated pulse number(the unit is pulse equivalent)	SD1063	,		
SD1066 Low 16 bits of current output frequency(the unit is pulse number) SD1067 High 16 bits of current output frequency(the unit is pulse number) Low 16 bits of current output frequency(the unit is pulse number) Low 16 bits of current output frequency(the unit is pulse equivalent) High 16 bits of current output frequency(the unit is pulse equivalent) 1: Pulse data block error 2: Equivalent mode: pulse amount/turn, amount/ turn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	SD1064	_		
SD1065 frequency(the unit is pulse number) SD1067 High 16 bits of current output frequency(the unit is pulse number) Low 16 bits of current output frequency(the unit is pulse equivalent) High 16 bits of current output frequency(the unit is pulse equivalent) 1: Pulse data block error 2: Equivalent mode: pulse amount/turn amount/ turn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	SD1065	,		
SD1067 frequency(the unit is pulse number) Low 16 bits of current output frequency(the unit is pulse equivalent) High 16 bits of current output frequency(the unit is pulse equivalent) 1: Pulse data block error 2: Equivalent mode: pulse amount/turn \(\) amount furn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	SD1066	_		
SD1068 frequency(the unit is pulse equivalent) High 16 bits of current output frequency(the unit is pulse equivalent) 1: Pulse data block error 2: Equivalent mode: pulse amount/turn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	SD1067			
SD1069 frequency(the unit is pulse equivalent) 1: Pulse data block error 2: Equivalent mode: pulse amount/turn amount/ turn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	SD1068	frequency(the unit is pulse		
2: Equivalent mode: pulse amount/turn \(\) amount/ turn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	SD1069	frequency(the unit is pulse		
SD1071 Code of error pulse block	SD1070	Wrong Pulse message	2: Equivalent mode: pulse amount/turn amount/turn of movement is 0 3:Code of system parameters block error 4: Pulse data block exceeds max limit 10: Zero return do not set near point signal 11: Speed of zero return is 0 12: Crawling speed of zero return is 0 13 Direction of zero return speed	
	SD1071	Code of error pulse block		

SD1080	Current segment(No. n segment)	
SD1082	Low 16 bits of accumulated pulse number (the unit is pulse number)	
SD1083	High 16 bits of accumulated pulse number (the unit is pulse number)	
SD1084	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
SD1085	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_5
I SDHOXA	Low 16 bits of current output frequency(the unit is pulse number)	
SD1087	High 16 bits of current output frequency(the unit is pulse number)	
	Low 16 bits of current output frequency(the unit is pulse equivalent)	
	High 16 bits of current output frequency(the unit is pulse equivalent)	

JLSE_6

	Low 16 bits of current output frequency(the unit is pulse equivalent)		
SD1109	High 16 bits of current output frequency(the unit is pulse equivalent)		
SD1110	Wrong Pulse message	1: Pulse data block error 2:Equivalent mode: pulse amount/turn, amount/ turn of movement is 0 3:Code of system parameters block error 4:Pulse data block exceeds max limit 10:Zero return do not set near point signal 11:Speed of zero return is 0 12:Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	
SD1111	Code of error pulse block		
SD1120	Current segment(No. n segment)		
SD1122	Low 16 bits of accumulated pulse number (the unit is pulse number)		
SD1123	High 16 bits of accumulated pulse number (the unit is pulse number)		PULSE_7
SD1124	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)		
SD1125	High 16 bits of accumulated pulse number(the unit is pulse equivalent)		

SD1126	Low 16 bits of current output frequency(the unit is pulse number)		
SD1127	High 16 bits of current output frequency(the unit is pulse number)		
SD1128	Low 16 bits of current output frequency(the unit is pulse equivalent)		
SD1129	High 16 bits of current output frequency(the unit is pulse equivalent)		
		1: Pulse data block error	-
		2:Equivalent mode: pulse amount/turn, amount/ turn of movement is 0	
		3:Code of system parameters block error	
SD1130	Wrong Pulse message	4:Pulse data block exceeds max limit	
		10:Zero return do not set near point signal	
		11:Speed of zero return is 0	
		12:Crawling speed of zero return is 0	
		13 Direction of zero return speed and zero auxiliary speed	
SD1131	Code of error pulse block		-
SD1140	Current segment(No. n segment)		_
SD1142	Low 16 bits of accumulated pulse number (the unit is pulse number)		PULSE_8
SD1143	High 16 bits of accumulated pulse number (the unit is pulse number)		

		Ī	,
SD1144	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)		
SD1145	High 16 bits of accumulated pulse number(the unit is pulse equivalent)		
SD1146	Low 16 bits of current output frequency(the unit is pulse number)		
SD1147	High 16 bits of current output frequency(the unit is pulse number)		
	Low 16 bits of current output frequency(the unit is pulse equivalent)		
	High 16 bits of current output frequency(the unit is pulse equivalent)		
SD1150	Wrong Pulse message	1: Pulse data block error 2:Equivalent mode: pulse amount/turn, amount/ turn of movement is 0 3:Code of system parameters block error 4:Pulse data block exceeds max limit 10:Zero return do not set near point signal 11:Speed of zero return is 0 12:Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	
SD1151	Code of error pulse block		_
SD1160	Current segment(No. n segment)		
551100	carrent segment(110. ii segment)		PULSE_9

	T 161', C 1 1 1		
SD1162	Low 16 bits of accumulated pulse number (the unit is pulse number)		
SD1163	High 16 bits of accumulated pulse number (the unit is pulse number)		
SD1164	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)		
SD1165	High 16 bits of accumulated pulse number(the unit is pulse equivalent)		
SD1166	Low 16 bits of current output frequency(the unit is pulse number)		
SD1167	High 16 bits of current output frequency(the unit is pulse number)		
SD1168	Low 16 bits of current output frequency(the unit is pulse equivalent)		
SD1169	High 16 bits of current output frequency(the unit is pulse equivalent)		
SD1170	Wrong Pulse message	1: Pulse data block error 2:Equivalent mode: pulse amount/turn, amount/ turn of movement is 0 3:Code of system parameters block error 4:Pulse data block exceeds max limit 10:Zero return do not set near point signal 11:Speed of zero return is 0 12:Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed	
SD1171	Code of error pulse block		
			<u>i</u>

SD1180	Current segment(No. n segment)	
SD1182	Low 16 bits of accumulated pulse number (the unit is pulse number)	
SD1183	High 16 bits of accumulated pulse number (the unit is pulse number)	
SD1184	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
SD1185	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_1 0
SD1186	Low 16 bits of current output frequency(the unit is pulse number)	
SD1187	High 16 bits of current output frequency(the unit is pulse number)	
	Low 16 bits of current output frequency(the unit is pulse equivalent)	
SD1189	High 16 bits of current output frequency(the unit is pulse equivalent)	

SD1190 Wrong Pulse message SD1191 Code of error pulse block	1: Pulse data block error 2:Equivalent mode: pulse amount/turn, amount/ turn of movement is 0 3:Code of system parameters block error 4:Pulse data block exceeds max limit 10:Zero return do not set near point signal 11:Speed of zero return is 0 12:Crawling speed of zero return is 0 13 Direction of zero return speed and zero auxiliary speed

Sequence Function Block (SD300-SD399)

ID	ID Function Description	
SD300	Executing instruction of BLOCK1	The value will be used when BLOCK monitors
SD301	Executing instruction of BLOCK2	The value will be used when BLOCK monitors
SD302	Executing instruction of BLOCK3	The value will be used when BLOCK monitors
SD303	Executing instruction of BLOCK4	The value will be used when BLOCK monitors
SD304	Executing instruction of BLOCK5	The value will be used when BLOCK monitors
SD305	Executing instruction of BLOCK6	The value will be used when BLOCK monitors
SD396	Executing instruction of BLOCK97	The value will be used when BLOCK monitors

SD397	Executing instruction of BLOCK98	The value will be used when BLOCK monitors
SD398	Executing instruction of BLOCK99	The value will be used when BLOCK monitors
SD399	Executing instruction of BLOCK100	The value will be used when BLOCK monitors

Error Check (SD400-SD413)

ID	Function	Description
SD400		
SD401	Number of communication error expansion module	
SD402	Number of communication error BD	
•••••		
SD405		
SD406		
SD407		
SD408		
SD409 SD410	Operation error code number Numbers of shift register D when migration overruns	 Divided by zero error Former operand's address less that the latter one's of MRST,MSET ENCO,DECO encoding, decoding instruction data bit overruns. BDC code error Square root error
SD411		

SD412	
SD413	

Error Check (SD450-SD452)

ID	Function	Description
	1: Watchdog act (Default 200ms)	
	2: Control block application fail	
SD450	3: Visit illegal address	
	Hardware error type:	
	1: Register error	
	2: Bus error	
SD451	3: Usage error	
SD452	Hardware error	

Expansion Modules, BD Status (SD500-SD516)

ID	Function	Description	
SD500	Module number Expansion modules: $\#1\sim16$ BD: $\#10001\sim10005$		
SD501~5 16	Expansion module BD status		16 registers

Modules Information (SD520-SD855)

ID	Function	Description	
SD520			
		Expansion module 1	
SD535			
			Each expansion module occupies 16 registers
SD760			
		Expansion module 16	
SD775			
SD776			
		BD module 1	
SD791			
			Each BD module
SD840			occupies 16 registers
		BD module 5	
SD855			

Expansion Module Error Information

ID	Function	Description	
SD860	Error times of module read		
SD861	Error types of module read	 Expansion's CRC parity error Expansion's address error Expansion accepted data length error Expansion's accept buffer zone overflows Expansion timeout error CRC parity error when PLC is 	Expansion module 1

		accepting data 4. Unknown error	
SD862	Error times of module write	W Children Children	
SD863	Error types of module write		
SD864	Error times of module read		
SD865	Error types of module read	 Expansion's CRC parity error Expansion's address error Expansion accepted data length error Expansion's accept buffer zone overflows Expansion timeout error CRC parity error when PLC is accepting data Unknown error 	Expansion module 2
SD866	Error times of module write		
SD867	Error types of module write		
SD920	Error times of module read		
SD921	Error types of module read	 12. Expansion's CRC parity error 13. Expansion's address error 14. Expansion accepted data length error 15. Expansion's accept buffer zone overflows 16. Expansion timeout error 17. CRC parity error when PLC is accepting data 18. Unknown error 	Expansion module 16
SD922	Error times of module write		
SD923	Error types of module write		
SD924	Error times of module read		
SD925	Error types of module read		
SD926	Error times of module write		BD module
SD927	Error types of module write		
SD940			BD module
SD941			5

SD942		
SD943		

Communication

	ID	Function	Description
	SD130		
			0: Correct
			Serial port communication error code :
			13: No initial character
			14: No ending character
			100: Hardware error
			101: Timeout error
			108: CRC parity error
			110: Station number error
COM 1			Modbus communication error code:
			211: Function number do not support
			212: Address error (overrun)
			213: Data length error
			214: Data error
	Serial port		215: Slave station busy
		_	216: Data storage error
	SD131	communication error code	(Erase FLASH)
	SD132		
	SD133		
	SD134		

	SD135		
	SD136		
	SD137		
	SD138		
	SD139		
	SD140		
			0: Correct
			Serail port communication error code :
			13: No initial character
			14: No ending character
			100: Hardware error
			101: Timeout error
			108: CRC parity error
			110: Station number error
COM 2			Modbus communication error code:
			211: Function number do not support
			212: Address error (overrun)
			213: Data length error
			214: Data error
			215: Slave station busy
		Serial port	216: Data storage error
	SD141	communication error code	(Erase FLASH)
	SD142		
	SD143		

SD144	
SD145	
SD146	
SD147	
SD148	
SD149	

Special Data Register HSD (Power Down Memory)

ID	Function	Description
HSD0	Low 16 bits of accumulated pulse number (the unit is pulse number)	
HSD1	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD2	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD3	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_1
HSD4	Low 16 bits of accumulated pulse number (the unit is pulse number)	
HSD5	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD6	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD7	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_2
HSD8	Low 16 bits of accumulated pulse number (the unit is pulse number)	
HSD9	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD10	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD11	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_3

HSD12	Low 16 bits of accumulated pulse number (the unit is pulse number)	
HSD13	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD14	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD15	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_4
HSD16	Low 16 bits of accumulated pulse number (the unit is pulse number)	
HSD17	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD18	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD19	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_5
HSD20	Low 16 bits of accumulated pulse number (the unit is pulse number)	
HSD21	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD22	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD23	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_6
HSD24	Low 16 bits of accumulated pulse number (the unit is pulse number)	
HSD25	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD26	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD27	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_7
HSD28	Low 16 bits of accumulated pulse number (the unit is pulse number)	
HSD29	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD30	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD31	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_8
HSD32	Low 16 bits of accumulated pulse number (the unit is pulse number)	PULSE_9

HSD33	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD34	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD35	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD36	Low 16 bits of accumulated pulse number (the unit is pulse number)	
HSD37	High 16 bits of accumulated pulse number (the unit is pulse number)	
HSD38	Low 16 bits of accumulated pulse number(the unit is pulse equivalent)	
HSD39	High 16 bits of accumulated pulse number(the unit is pulse equivalent)	PULSE_10

Appendix 3. Special Flash Register schedule

Special FLASH data register SFD

I filtering

ID	Function	Description
SFD0*	Input filter time	
SFD2*	Watchdog run-up time, default value is 200ms	

I Mapping

ID	Function	Description	
SFD10*	I00 corresponds to X**	Input terminal 0 corresponds to X** number	0xFF means terminal bad, 0xFE means

^{*} means it works only after repowering

			terminal idle
SFD11*	I01 corresponds to X**		
SFD12*	I02 corresponds to X**		
SFD73*	I77 corresponds to X**	Default value is 77 (Octonary)	

O Mapping

ID	Function	Description	
SFD74*	O00 corresponds to Y**	Output terminal 0 correspond to Y** number	0xFF means terminal bad, 0xFE means terminal idle
		Default value is 0	
SFD134 *	O77 corresponds to Y**	Default value is 77 (Octonary)	

I Attribute

ID	Function	Description	
SFD138*	I00 attribute	Attribute of input terminal 0	0: positive logic others: negative logic
SFD139*	I01 attribute		
SFD201*	I77 attribute		

High Speed Counting

ID	Function	Description
SFD320	HSC0 frequency times	2: 2 times frequency; 4: 4 times frequency(effective at AB phase counting mode)
SFD321	HSC2 frequency times	Ditto
SFD322	HSC4 frequency times	Ditto
SFD323	HSC6 frequency times	Ditto
SFD324	HSC8 frequency times	Ditto
SFD325	HSC10 frequency times	Ditto
SFD326	HSC12 frequency times	Ditto
SFD327	HSC14 frequency times	Ditto
SFD328	HSC16 frequency times	Ditto
SFD329	HSC18 frequency times	Ditto
SFD330	Bit selection of HSC absolute and relative (24 segment)	bit0 corresponds to HSC0, bit1corresponds to HSC2, and so on, bit9 corresponds to HSC18 0: relative 1: absolute
SFD331	Interrupt circulating of 24 segments high speed counting	bit0 corresponds to HSC0, bit1corresponds to HSC2, and so on, bit9 corresponds to HSC18 0: single 1: loop
SFD332	CAM function	bit0 corresponds to HSC0, bit1corresponds to HSC2, and so on, bit9 corresponds to HSC18 0: do not support CAM function 1: support CAM function

Expansion Module Configuration

ID	Function	Description	
SFD350			
:			Configuration of the first expansion module
SFD359			
SFD360			Configuration of the second
:			Configuration of the second expansion module
SFD369			
:	:	:	
SFD500			Configuration of the 16th
:			Configuration of the 16th expansion module
SFD509			
SFD510			Configuration 1 of BD
:			module
SFD519			
:	:	:	
SFD550			Configuration 5 of PD
:			Configuration 5 of BD module
SFD559			

Communication

ID	Function	Description	Note
COM 1			
SFD600*	Communication mode		Refer to the value meaning of corresponding bit

SFD601*	Communication format	Baud rate, data bit, stop bit, parity	Refer to the value meaning of corresponding bit
SFD602*	Judgment time of frame timeout	In characters	High 8 bits invalid
SFD603*	Judgment time of reply timeout		High 8 bits invalid
SFD604	Waiting time before sending		Unit ms
COM 2			
SFD610*	Communication mode		Refer to the value meaning of corresponding bit
SFD611*	Communication format	Baud rate, data bit, stop bit, parity	Refer to the value meaning of corresponding bit
SFD612*	Judgment time of frame timeout		Unit: ms
SFD613*	Judgment time of reply timeout		Unit: ms, if value is set 0, it means no timeout waiting
SFD614	Waiting time before sending		Unit: ms

Timeout:

- (1) If 'judgment time of frame timeout' is set 0, then it will finish after accepting one character;8bit unsigned number.
- (2) If 'judgment time of reply timeout is set' 0, it means no timeout waiting; 16bits unsigned number.
- (3) If 'waiting time before sending' is set 0, it means no time-lapse; 16 bit unsigned number.

Value meaning of SFD600、SFD610 corresponding bits

Corresponding bit	Value meaning
0~7: Modbus station number	Modbus station number
8~15: Communication mode	0: modbus RTU mode (default value) 1: modbus ASCII mode

2: free-format

Value meaning of SFD601, SFD611 corresponding bits

Corresponding bit		Value 1	neaning	
0~3: Baud rate	0x0, BaudRate600	0x1, BaudRate1200	0x2, BaudRate2400	0x3, BaudRate4800
	0x4, BaudRate9600	0x5, BaudRate19200	0x6, BaudRate38400	0x7, BaudRate57600
	0x8, BaudRate11520 0	0x9, BaudRate19200 0	0xA, BaudRate25600	0xB, BaudRate28800
	0xC, BaudRate38400	0xD, BaudRate51200	0xE, BaudRate57600	0xF, BaudRate76800 0
4∼7: Data bit	0x0, 8 bits	0x1, 7 bits		
8~11: Stop bit	0x0, 2 bits		0x2, 1bit	
12~15: Odd-even parity	0x0, none	0x1, odd parity	0x2, even parity	

Reserved Motion Control Usage

ID	Function	Description		
SFD900	Pulse parameters setting	Bit 0: logic of pulse output 0: positive logic; 1: negative logic, default value is 0 Bit 1: logic of pulse direction 0: positive logic; 1: negative logic, default value is 0 Bit 8: unit of pulse 0: pulse number; 1: pulse equivalent, default value is 0		
SFD901	Reserved		Common	PUL
SFD902	Pulse number/1turn of low 16 bits		parameters	SE_1
SFD903	Pulse number/1turn of high 16 bits			
SFD904	Amount of movement/1turn of low 16 bits			
SFD905	Amount of movement/1turn of high 16 bits			
SFD906	Pulse direction terminal	Set number of terminal Y, 0xFF means no terminal		
SFD907	Direction delay time	Default value is 20, unit: ms		
SFD908	Positive compensation of gear clearance			
SFD909	Negative compensation of gear clearance			

SFD910	Low 16 bits of Electrical origin position			
SFD911	High 16 bits of Electrical origin position			
SFD912	Mechanical back to origin parameter setting	Bit0: Switch state setting of near point, 0: Normally ON; 1Normally OFF		
SFD913	Terminal setting of near point signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD914	Z phase terminal setting	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD915	Limit terminal setting	Bit7~bit0: Assign limit 1 number of terminal X, 0Xff for not terminal Bit15~bit8: Assign limit 2 number of terminal X, 0Xff for not terminal		
SFD916	Terminal setting of origin auxiliary signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD917	Terminal setting of zero clear CLR signal output terminal	Bit0~bit7: Assign the number of terminal Y, 0Xff for not terminal		
SFD918	Low 16 bits of return speed VH			
SFD919	High 16 bits of return speed VH			
SFD920	Low 16 bits of return speed VL			
SFD921	High 16 bits of return speed VL			
SFD922	Low 16 bits of crawling speed		-	
SFD923	High 16 bits of crawling speed			

SFD924	Low 16 bits of mechanical origin		
SFD925	High 16 bits of mechanical origin		
SFD926	Z phase number		-
SFD927	CLR signal delay time	Default value is 20, unit: ms	-
•••			-
SFD950	Low 16 bits of pulse default speed	Only when speed= 0, default speed is used to transmit	
SFD951	High 16 bits of pulse default speed	pulse.	
SFD952	Accelerating time of pulse default speed		
SFD953	Decelerating time of pulse default speed		
SFD954	Acc and dec time of tween		
SFD955	Reserved		The first set of
SFD956	Low 16 bits of max speed limiting		parameters
SFD957	High 16 bits of max speed limiting		
SFD958	Low 16 bits of starting speed		-
SFD959	High 16 bits of starting speed		-
SFD960	Low 16 bits of ending speed		
SFD961	High 16 bits of ending speed		
SFD970	Low 16 bits of pulse default speed	Only when speed=0, default	Second set
SFD971	High 16 bits of pulse default speed	speed is used to transmit pulse.	Second set of parameters
SFD972	Accelerating time of pulse default speed		

SFD973	Decelerating time of pulse			
3FD9/3	default speed			
SFD974	Acc and Dec time of tween			
3FD974	Acc and Dec time of tween			
SFD975	Reserved			
	X 4612 6			
SFD976	Low 16 bits of max speed			
	limiting			
aep.ogg	High 16 bits of max speed			
SFD977	limiting			
SFD978	Low 16 bits of starting speed			
SFD979	High 16 bits of starting speed			
SFD980	Low 16 bits of ending speed			
SFD981	High 16 bits of ending speed			
•••				
	Low 16 bits of pulse default			
SFD990	speed			
	speed	Only when speed=0, default		
SFD991	High 16 bits of pulse default	speed is used to transmit pulse.		
51.0331	speed			
	Accelerating time of pulse			
SFD992	default speed			
	derdant speed			
SFD993	Decelerating time of pulse			
51 D//3	default speed			
SFD994	Acc and Dec time of tween			
D1 ⁻ D774	Acc and Dec time of tween		Third set	
SFD995	Reserved		of	
	I 16134 of 1		parameters	
SFD996	Low 16 bits of max speed			
	limiting			
GED007	High 16 bits of max speed			
SFD997	limiting			
arbooc	T 161' C			
SFD998	Low 16 bits of starting speed			
SFD999	High 16 bits of starting speed			
SFD1000	Low 16 bits of ending speed			
SFD1001	High 16 bits of ending speed			
	8 11 12 12 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15			

	Low 16 bits of pulse default			
SFD1010	speed	Only when speed=0, default		
SFD1011	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD1012	Accelerating time of pulse default speed			
SFD1013	Decelerating time of pulse default speed			
SFD1014	Acc and Dec time of tween			
SFD1015	Reserved		Forth set of	
SFD1016	Low 16 bits of max speed limiting		parameters	
SFD1017	High 16 bits of max speed limiting			
SFD1018	Low 16 bits of starting speed			
SFD1019	High 16 bits of starting speed			
SFD1020	Low 16 bits of ending speed			
SFD1021	High 16 bits of ending speed			
SFD1030	Pulse parameters setting	Bit 0: logic of pulse output 0: positive logic; 1: negative logic, default is 0 Bit 1: logic of pulse direction 0: positive logic; 1: negative logic, default is 0 Bit 8: pulse unit 0: pulse number; 1: pulse equivalent, default is 0	Public parameters	PUL SE_2

SFD1031			
SFD1032	Low 16 bits of pulse number per circle		
SFD1033	High 16 bits of pulse number per circle		
SFD1034	Low 16 bits of pulse equivalent per circle		
SFD1035	High 16 bits of pulse equivalent per circle		
SFD1036	Pulse direction terminal	Assign the number of terminal Y, 0xFF for no terminal	
SFD1037	Direction delay time	Default 20, unit: ms	
SFD1038	Positive compensation of gear gap	Negative compensation will also use this data when gear gap negative compensation =0	
SFD1039	Negative compensation of gear gap		
SFD1040	Low 16 bits of Electrical origin position		
SFD1041	High 16 bits of Electrical origin position		
SFD1042	Mechanical back to origin parameter setting	Bit0: Switch state setting of near point, 0: Normally ON; 1Normally OFF	
SFD1043	Terminal setting of near point signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1044	Z phase terminal setting	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	

SFD1045	Limit terminal setting	Bit7~bit0: Assign limit 1 number of terminal X, 0Xff for not terminal Bit15~bit8: Assign limit 2 number of terminal X, 0Xff for not terminal		
SFD1046	Terminal setting of origin auxiliary signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD1047	Terminal setting of zero clear CLR signal output terminal	Bit0~bit7: Assign the number of terminal Y, 0Xff for not terminal		
SFD1048	Low 16 bits of return speed VH			
SFD1049	High 16 bits of return speed VH			
SFD1050	Low 16 bits of return speed VL			
SFD1051	High 16 bits of return speed VL			
SFD1052	Low 16 bits of crawling speed		-	
SFD1053	High 16 bits of crawling speed			
SFD1054	Low 16 bits of mechanical origin			
SFD1055	High 16 bits of mechanical origin			
SFD1056	Z phase number			
SFD1057	CLR signal delay time	Default 20, unit: ms	1	
•••			-	
SFD1080	Low 16 bits of pulse default speed	Only when speed=0, default	First set of	
SFD1081	High 16 bits of pulse default speed	speed is used to transmit pulse.	parameters	

	Accelerating time of pulse			
SFD1082	default speed			
	derauit speed			
	Decelerating time of pulse			
SFD1083	default speed			
	default speed			
SFD1084	Acc and Dec time of tween			
212100.				
SFD1085	Reserved			
GED 1006	Low 16 bits of max speed			
SFD1086	limiting			
GED 1007	High 16 bits of max speed			
SFD1087	limiting			
SFD1088	Low 16 bits of starting speed			
SFD1089	High 16 bits of starting speed			
GED 1000	7 1511 0 11			
SFD1090	Low 16 bits of ending speed			
SFD1091	High 16 bits of ending speed			
35D1091	High to bits of ending speed			
•••				
	Low 16 bits of pulse default			
SFD1100	speed			
	Special	Only when speed=0, default		
GED 1101	High 16 bits of pulse default	speed is used to transmit pulse.		
SFD1101	speed			
GED 1 1 0 2	Accelerating time of pulse			
SFD1102	default speed			
	1			
GED 1 100	Decelerating time of pulse			
SFD1103	default speed			
	•		Second set	
SFD1104	Acc and Dec time of tween		of	
			parameters	
SFD1105	Reserved			
	Low 16 hits of some			
SFD1106	Low 16 bits of max speed			
	limiting			
	High 16 hits of may aread			
SFD1107	High 16 bits of max speed			
	limiting			
SFD1108	Low 16 bits of starting speed			
2501108	Low to bits of starting speed			
SFD1109	High 16 bits of starting speed			
	ing it of the or starting speed			
ā.	1	<u> </u>		·

SFD1110	Low 16 bits of ending speed		
SFD1111	High 16 bits of ending speed		
L SED1120 1	Low 16 bits of pulse default speed	Only when speed=0, default	
I SEDITZI T	High 16 bits of pulse default speed	speed is used to transmit pulse.	
LSEDITE	Accelerating time of pulse default speed		
LVHIII	Decelerating time of pulse default speed		
SFD1124	Acc and Dec time of tween		
SFD1125	Reserved		Third set of
SFD1126	Low 16 bits of max speed limiting		parameters
	High 16 bits of max speed limiting		
SFD1128	Low 16 bits of starting speed		
SFD1129	High 16 bits of starting speed		
SFD1130	Low 16 bits of ending speed		
SFD1131	High 16 bits of ending speed		
•••			
L SED1140 L	Low 16 bits of pulse default speed	Only when speed=0, default	
1 SED1141 1	High 16 bits of pulse default speed	speed is used to transmit pulse.	Forth set
I SEDITAL I	Accelerating time of pulse default speed		of parameters
1 8 1 1 1 1 4 3 1	Decelerating time of pulse default speed		
SFD1144	Acc and Dec time of tween		

SFD1145	Reserved			
SFD1146	Low 16 bits of max speed limiting			
SFD1147	High 16 bits of max speed limiting			
SFD1148	Low 16 bits of starting speed			
SFD1149	High 16 bits of starting speed			
SFD1150	Low 16 bits of ending speed			
SFD1151	High 16 bits of ending speed			
SFD1160	Pulse parameters setting	Bit 0: logic of pulse output 0: positive logic; 1: negative logic, default is 0 Bit 1: logic of pulse direction 0: positive logic; 1: negative logic, default is 0 Bit 8: pulse unit 0: pulse number; 1: pulse equivalent, default is 0	Public parameters	PUL SE_3
SFD1161				
SFD1162	Low 16 bits of pulse number per circle			
SFD1163	High 16 bits of pulse number per circle			
SFD1164	Low 16 bits of pulse equivalent per circle			
SFD1165	High 16 bits of pulse equivalent per circle			

		Assign the number of terminal	
SFD1166	Pulse direction terminal	Y, 0xFF for no terminal	
		1, OALT TOT HO TEITHING	
SFD1167	Direction delay time	Default 20, unit: ms	
	Desitive compensation of goor	Negative compensation will	
SFD1168	Positive compensation of gear	also use this data when gear	
	gap	gap negative compensation =0	
SFD1169	Negative compensation of gear		
31 11109	gap		
SFD1170	Low 16 bits of Electrical		
2	origin position		
	High 16 hits of Electrical		
SFD1171	High 16 bits of Electrical		
	origin position		
		Bit0: Switch state setting of	
SFD1172	Mechanical back to origin		
SFD11/2	parameter setting	near point, 0: Normally ON;	
		1Normally OFF	
		Bit0~bit7: Assign the number	
SFD1173	Terminal setting of near point	_	
3FD11/3	signal	of terminal X, 0Xff for not	
		terminal	
		Bit0~bit7: Assign the number	
SFD1174	Z phase terminal setting	of terminal X, 0Xff for not	
~1.D11/T	_ phase terminal setting	terminal	
		terminar	
		Bit7~bit0: Assign limit 1	
		number of terminal X, 0Xff for	
		not terminal	
SFD1175	Limit terminal setting		
	5	Bit15~bit8: Assign limit 2	
		number of terminal X, 0Xff for	
		not terminal	
	Torminal actting of said	Bit0~bit7: Assign the number	
SFD1176	Terminal setting of origin	of terminal X, 0Xff for not	
	auxiliary signal	terminal	
	Terminal setting of zero clear	Bit0~bit7: Assign the number	
SFD1177	CLR signal output terminal	of terminal Y, 0Xff for not	
	CER signal output terminal	terminal	
SFD1178	Low 16 bits of return speed		
51 511/0	VH		

	I		ı	
SFD1179	High 16 bits of return speed VH			
SFD1180	Low 16 bits of return speed VL			
SFD1181	High 16 bits of return speed VL			
SFD1182	Low 16 bits of crawling speed			
SFD1183	High 16 bits of crawling speed			
SFD1184	Low 16 bits of mechanical origin			
SFD1185	High 16 bits of mechanical origin			
SFD1186	Z phase number			
SFD1187	CLR signal delay time	Default 20, unit: ms		
SFD1210	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD1211	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD1212	Accelerating time of pulse default speed			
SFD1213	Decelerating time of pulse default speed			
SFD1214	Acc and Dec time of tween		First set of	
SFD1215	Reserved		parameters	
SFD1216	Low 16 bits of max speed limiting			
SFD1217	High 16 bits of max speed limiting			
SFD1218	Low 16 bits of starting speed			
SFD1219	High 16 bits of starting speed			
SFD1220	Low 16 bits of ending speed			
	•	•		

SFD1230 Low 16 bits of pulse default speed SFD1231 High 16 bits of pulse default speed is used to transmit pulse. SFD1232 Accelerating time of pulse default speed is used to transmit pulse. SFD1233 Decelerating time of pulse default speed SFD1234 Acc and Dec time of tween SFD1235 Reserved SFD1236 Low 16 bits of max speed limiting SFD1237 High 16 bits of max speed limiting SFD1238 Low 16 bits of starting speed SFD1239 High 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1251 Low 16 bits of pulse default speed SFD1251 Low 16 bits of pulse default speed SFD1252 Accelerating time of pulse default speed is used to transmit pulse. SFD1253 Decelerating time of pulse	SFD1221	High 16 bits of ending speed		
SFD1231 High 16 bits of pulse default speed SFD1232 Accelerating time of pulse default speed SFD1233 Decelerating time of pulse default speed SFD1234 Acc and Dec time of tween SFD1235 Reserved Second set of parameters SFD1236 Low 16 bits of max speed limiting SFD1237 High 16 bits of starting speed SFD1238 Low 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1251 High 16 bits of pulse default speed SFD1251 Accelerating time of pulse default speed SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse SFD1253 Second set of parameters SFD1254 SFD1255 S	•••			
SFD1231 speed SFD1232 Accelerating time of pulse default speed SFD1233 Decelerating time of pulse default speed SFD1234 Acc and Dec time of tween SFD1235 Reserved SFD1236 Low 16 bits of max speed limiting SFD1237 High 16 bits of starting speed SFD1238 Low 16 bits of starting speed SFD1239 High 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1250 Low 16 bits of pulse default speed SFD1251 Accelerating time of pulse default speed is used to transmit pulse. SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse SED1253 Decelerating time of pulse SED1253 Decelerating time of pulse	SFD1230	_	-	
SFD1233 Decelerating time of pulse default speed SFD1234 Acc and Dec time of tween SFD1235 Reserved SFD1236 Low 16 bits of max speed limiting SFD1237 High 16 bits of max speed limiting SFD1238 Low 16 bits of starting speed SFD1239 High 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1250 Low 16 bits of pulse default speed SFD1251 High 16 bits of pulse default speed is used to transmit pulse. SFD1252 Accelerating time of pulse SFD1253 Decelerating time of pulse SFD1253 Decelerating time of pulse	SFD1231		speed is used to transmit pulse.	
SFD1234 Acc and Dec time of tween SFD1235 Reserved SFD1236 Low 16 bits of max speed limiting SFD1237 High 16 bits of max speed limiting SFD1238 Low 16 bits of starting speed SFD1239 High 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1251 Low 16 bits of pulse default speed SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse SFD1253 Decelerating time of pulse	SFD1232			
SFD1235 Reserved SFD1236 Low 16 bits of max speed limiting SFD1237 High 16 bits of starting speed SFD1238 Low 16 bits of starting speed SFD1239 High 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1250 Low 16 bits of pulse default speed SFD1251 High 16 bits of pulse default speed is used to transmit pulse. SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse	SFD1233			
SFD1236 Low 16 bits of max speed limiting SFD1237 High 16 bits of max speed limiting SFD1238 Low 16 bits of starting speed SFD1239 High 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1250 Low 16 bits of pulse default speed SFD1251 High 16 bits of pulse default speed SFD1252 Accelerating time of pulse SFD1253 Decelerating time of pulse SFD1254 Decelerating time of pulse SFD1255 Decelerating time of pulse SFD1256 Decelerating time of pulse SFD1257 Decelerating time of pulse SFD1258 Decelerating time of pulse SFD1259 Decelerating time of pulse SFD1251 Decelerating time of pulse SFD1252 Decelerating time of pulse SFD1253 Decelerating time of pulse SFD1256 Decelerating time of pulse SFD1257 Decelerating time of pulse SFD1258 Decelerating time of pulse SFD1259 Decelerating time of pulse SFD1251 Decelerating time of pulse SFD1252 Decelerating time of pulse SFD1253 Decelerating time of pulse SFD1254 Decelerating time of pulse SFD1255 Decelerating time of pulse SFD1256 Decelerating time of pulse SFD1257 Decelerating time of pulse SFD1258 Decelerating time of pulse SFD1259 Decelerating time of pulse SFD1250 Decelerating time of pulse SFD1251 Decelerating time of pulse SFD1252 Decelerating time of pulse SFD1253 Decelerating time of pulse SFD1250 Decelerating time of pulse SFD1251 Decelerating time of pulse SFD1252 Decelerating time of pulse SFD1253 Decelerating time of pulse SFD1256 Decelerating time of pulse SFD1257 Decelerating time of pulse SFD1258 Decelerating time of pulse SFD1259 Decelerating time of pulse SFD1250 Decelerating time of pulse SFD1250 Decelerating time of pulse SFD1250 Decelerating time of pulse	SFD1234	Acc and Dec time of tween		
SFD1236 limiting SFD1237 High 16 bits of max speed limiting SFD1238 Low 16 bits of starting speed SFD1239 High 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1250 Low 16 bits of pulse default speed SFD1251 High 16 bits of pulse default speed is used to transmit pulse. SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse	SFD1235	Reserved		
SFD1237 limiting SFD1238 Low 16 bits of starting speed SFD1239 High 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1250 Low 16 bits of pulse default speed Only when speed=0, default speed is used to transmit pulse. SFD1251 High 16 bits of pulse default speed SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse SFD1253 Decelerating time of pulse	SFD1236	^		parameters
SFD1239 High 16 bits of starting speed SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1250 Low 16 bits of pulse default speed Only when speed=0, default speed is used to transmit pulse. SFD1251 High 16 bits of pulse default speed is used to transmit pulse. SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse	SFD1237			
SFD1240 Low 16 bits of ending speed SFD1241 High 16 bits of ending speed SFD1250 Low 16 bits of pulse default speed Only when speed=0, default speed is used to transmit pulse. SFD1251 High 16 bits of pulse default speed SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse	SFD1238	Low 16 bits of starting speed		
SFD1241 High 16 bits of ending speed SFD1250 Low 16 bits of pulse default speed Only when speed=0, default speed is used to transmit pulse. SFD1251 High 16 bits of pulse default speed SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse	SFD1239	High 16 bits of starting speed		
SFD1250 Low 16 bits of pulse default speed SFD1251 High 16 bits of pulse default speed SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse SFD1253 Decelerating time of pulse	SFD1240	Low 16 bits of ending speed		
SFD1250 Low 16 bits of pulse default speed SFD1251 High 16 bits of pulse default speed of pulse default speed SFD1252 Accelerating time of pulse default speed SFD1253 Decelerating time of pulse SFD1253 Decelerating time of pulse	SFD1241	High 16 bits of ending speed		
SFD1251 speed Spee				
SFD1251 Ingil 10 bits of pulse default speed SFD1252 Accelerating time of pulse default speed Third set of parameters Decelerating time of pulse	SFD1250	•	-	
SFD1252 Accelerating time of pulse of parameters SFD1253 Decelerating time of pulse	SFD1251		speed is used to transmit pulse.	
SED1253 Decelerating time of pulse	SFD1252			of
default speed	SFD1253	-		
SFD1254 Acc and Dec time of tween	SFD1254	Acc and Dec time of tween		
SFD1255 Reserved	SFD1255	Reserved		

SFD1256	Low 16 bits of max speed limiting			
SFD1257	High 16 bits of max speed limiting			
SFD1258	Low 16 bits of starting speed			
SFD1259	High 16 bits of starting speed			
SFD1260	Low 16 bits of ending speed			
SFD1261	High 16 bits of ending speed			
SFD1270	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD1271	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD1272	Accelerating time of pulse default speed			
SFD1273	Decelerating time of pulse default speed			
SFD1274	Acc and Dec time of tween			
SFD1275	Reserved		Forth set of	
SFD1276	Low 16 bits of max speed limiting		parameters	
SFD1277	High 16 bits of max speed limiting			
SFD1278	Low 16 bits of starting speed			
SFD1279	High 16 bits of starting speed			
SFD1280	Low 16 bits of ending speed			
SFD1281	High 16 bits of ending speed			
•••				

		Bit 0: logic of pulse output		
		0: positive logic;		
		1: negative logic, default is 0		
		Bit 1: logic of pulse direction		
SFD1290	Pulse parameters setting	0: positive logic;		
		1: negative logic, default is 0		
		Bit 8: pulse unit		
		0: pulse number;		
		1: pulse equivalent, default is 0		
SFD1291				
SFD1292	Low 16 bits of pulse number per circle			
SFD1293	High 16 bits of pulse number per circle		Public parameters	PUL SE_4
SFD1294	Low 16 bits of pulse equivalent per circle			
SFD1295	High 16 bits of pulse equivalent per circle			
SFD1296	Pulse direction terminal	Assign the number of terminal Y, 0xFF for no terminal		
SFD1297	Direction delay time	Default 20, unit: ms		
SFD1298	Positive compensation of gear gap	Negative compensation will also use this data when gear gap negative compensation =0		
SFD1299	Negative compensation of gear gap			
SFD1300	Low 16 bits of Electrical origin position			
SFD1301	High 16 bits of Electrical origin position			

		Divo C is 1 and is a	1	
SFD1302	Mechanical back to origin parameter setting	Bit0: Switch state setting of near point, 0: Normally ON; 1Normally OFF		
SFD1303	Terminal setting of near point signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD1304	Z phase terminal setting	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD1305	Limit terminal setting	Bit7~bit0: Assign limit 1 number of terminal X, 0Xff for not terminal Bit15~bit8: Assign limit 2 number of terminal X, 0Xff for not terminal		
SFD1306	Terminal setting of origin auxiliary signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD1307	Terminal setting of zero clear CLR signal output terminal	Bit0~bit7: Assign the number of terminal Y, 0Xff for not terminal		
SFD1308	Low 16 bits of return speed VH			
SFD1309	High 16 bits of return speed VH			
SFD1310	Low 16 bits of return speed VL			
SFD1311	High 16 bits of return speed VL			
SFD1312	Low 16 bits of crawling speed			
SFD1313	High 16 bits of crawling speed			
SFD1314	Low 16 bits of mechanical origin			
SFD1315	High 16 bits of mechanical origin			

SFD1316	Z phase number		
SFD1317	CLR signal delay time	Default 20, unit: ms	
SFD1340	Low 16 bits of pulse default speed	Only when speed=0, default	
SFD1341	High 16 bits of pulse default speed	speed is used to transmit pulse.	
SFD1342	Accelerating time of pulse default speed		
SFD1343	Decelerating time of pulse default speed		
SFD1344	Acc and Dec time of tween		
SFD1345	Reserved		First set of
SFD1346	Low 16 bits of max speed limiting		parameters
SFD1347	High 16 bits of max speed limiting		
SFD1348	Low 16 bits of starting speed		
SFD1349	High 16 bits of starting speed		
SFD1350	Low 16 bits of ending speed		
SFD1351	High 16 bits of ending speed		
SFD1360	Low 16 bits of pulse default speed	Only when speed=0, default	
SFD1361	High 16 bits of pulse default speed	speed is used to transmit pulse.	Second set
SFD1362	Accelerating time of pulse default speed		of parameters
SFD1363	Decelerating time of pulse default speed		
SFD1364	Acc and Dec time of tween		

SFD1365	Reserved			
SFD1366	Low 16 bits of max speed limiting			
SFD1367	High 16 bits of max speed limiting			
SFD1368	Low 16 bits of starting speed			
SFD1369	High 16 bits of starting speed		-	
SFD1370	Low 16 bits of ending speed		-	
SFD1371	High 16 bits of ending speed			
•••				
SFD1380	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD1381	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD1382	Accelerating time of pulse default speed			
SFD1383	Decelerating time of pulse default speed			
SFD1384	Acc and Dec time of tween		-	
SFD1385	Reserved		Third set of	
SFD1386	Low 16 bits of max speed limiting		parameters	
SFD1387	High 16 bits of max speed limiting			
SFD1388	Low 16 bits of starting speed			
SFD1389	High 16 bits of starting speed			
SFD1390	Low 16 bits of ending speed			
SFD1391	High 16 bits of ending speed		-	
•••				
SFD1400	Low 16 bits of pulse default speed	Only when speed=0, default speed is used to transmit pulse.	Forth set of	

SFD1401	High 16 bits of pulse default speed		parameters	
SFD1402	Accelerating time of pulse default speed			
SFD1403	Decelerating time of pulse default speed			
SFD1404	Acc and Dec time of tween			
SFD1405	Reserved			
SFD1406	Low 16 bits of max speed limiting			
SFD1407	High 16 bits of max speed limiting			
SFD1408	Low 16 bits of starting speed			
SFD1409	High 16 bits of starting speed			
SFD1410	Low 16 bits of ending speed			
SFD1411	High 16 bits of ending speed			
•••				
SFD1420	Pulse parameters setting	Bit 0: logic of pulse output 0: positive logic; 1: negative logic, default is 0 Bit 1: logic of pulse direction 0: positive logic; 1: negative logic, default is 0 Bit 8: pulse unit 0: pulse number; 1: pulse equivalent, default is 0	Public parameters	PUL SE_5
SFD1421				
SFD1422	Low 16 bits of pulse number per circle			

SFD1423	High 16 bits of pulse number per circle		
SFD1424	Low 16 bits of pulse equivalent per circle		
SFD1425	High 16 bits of pulse equivalent per circle		
SFD1426	Pulse direction terminal	Assign the number of terminal Y, 0xFF for no terminal	
SFD1427	Direction delay time	Default 20, unit: ms	
SFD1428	Positive compensation of gear gap	Negative compensation will also use this data when gear gap negative compensation =0	
SFD1429	Negative compensation of gear gap		
SFD1430	Low 16 bits of Electrical origin position		
SFD1431	High 16 bits of Electrical origin position		
SFD1432	Mechanical back to origin parameter setting	Bit0: Switch state setting of near point, 0: Normally ON; 1Normally OFF	
SFD1433	Terminal setting of near point signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1434	Z phase terminal setting	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1435	Limit terminal setting	Bit7~bit0: Assign limit 1 number of terminal X, 0Xff for not terminal Bit15~bit8: Assign limit 2 number of terminal X, 0Xff for not terminal	

SFD1436	Terminal setting of origin auxiliary signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD1437	Terminal setting of zero clear CLR signal output terminal	Bit0~bit7: Assign the number of terminal Y, 0Xff for not terminal		
SFD1438	Low 16 bits of return speed VH			
SFD1439	High 16 bits of return speed VH			
SFD1440	Low 16 bits of return speed VL			
SFD1441	High 16 bits of return speed VL			
SFD1442	Low 16 bits of crawling speed			
SFD1443	High 16 bits of crawling speed			
SFD1444	Low 16 bits of mechanical origin			
SFD1445	High 16 bits of mechanical origin			
SFD1446	Z phase number			
SFD1447	CLR signal delay time	Default 20, unit: ms		
SFD1470	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD1471	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD1472	Accelerating time of pulse default speed		First set of parameters	
SFD1473	Decelerating time of pulse default speed			
SFD1474	Acc and Dec time of tween			
SFD1475	Reserved			

	Low 16 bits of max speed		1	
SFD1476	limiting			
	Inniting			
CED1477	High 16 bits of max speed		1	
SFD1477	limiting			
	-			
SFD1478	Low 16 bits of starting speed			
SFD1479	High 16 bits of starting speed		-	
SFD14/9	High to bits of starting speed			
SFD1480	Low 16 bits of ending speed		1	
SFD1481	High 16 bits of ending speed			
			-	
•••				
	Low 16 bits of pulse default			
SFD1490	speed	0-1		
	1	Only when speed=0, default		
SFD1491	High 16 bits of pulse default	speed is used to transmit pulse.		
5111471	speed			
	A 1			
SFD1492	Accelerating time of pulse			
	default speed			
	Decelerating time of pulse		-	
SFD1493	default speed			
	1			
SFD1494	Acc and Dec time of tween			
GED 1 405	D 1		Second set	
SFD1495	Reserved		of	
	Low 16 bits of max speed		parameters	
SFD1496	limiting		Parameters	
SFD1497	High 16 bits of max speed]	
SI D1437	limiting			
GED 1 400	T 161% C		_	
SFD1498	Low 16 bits of starting speed			
SFD1499	High 16 bits of starting speed		1	
	ingi 10 one of starting speed			
SFD1500	Low 16 bits of ending speed		1	
]	
SFD1501	High 16 bits of ending speed			
			1	
•••				
GED 1510	Low 16 bits of pulse default	Only when speed=0, default	Third set	
SFD1510	speed	speed is used to transmit pulse.	of	
			OI	

SFD1511	High 16 bits of pulse default speed		parameters
SFD1512	Accelerating time of pulse default speed		
SFD1513	Decelerating time of pulse default speed		
SFD1514	Acc and Dec time of tween		
SFD1515	Reserved		
SFD1516	Low 16 bits of max speed limiting		
SFD1517	High 16 bits of max speed limiting		
SFD1518	Low 16 bits of starting speed		
SFD1519	High 16 bits of starting speed		
SFD1520	Low 16 bits of ending speed		
SFD1521	High 16 bits of ending speed		
•••			
SFD1530	Low 16 bits of pulse default speed	Only when speed=0, default	
SFD1531	High 16 bits of pulse default speed	speed is used to transmit pulse.	
SFD1532	Accelerating time of pulse default speed		
SFD1533	Decelerating time of pulse default speed		Forth set of
SFD1534	Acc and Dec time of tween		parameters
SFD1535	Reserved		
SFD1536	Low 16 bits of max speed limiting		
SFD1537	High 16 bits of max speed limiting		
SFD1538	Low 16 bits of starting speed		

SFD1539	High 16 bits of starting speed			
SFD1540	Low 16 bits of ending speed			
SFD1541	High 16 bits of ending speed			
•••				
SFD1550	Pulse parameters setting	Bit 0: logic of pulse output 0: positive logic; 1: negative logic, default is 0 Bit 1: logic of pulse direction 0: positive logic; 1: negative logic, default is 0 Bit 8: pulse unit 0: pulse number; 1: pulse equivalent, default is 0		
SFD1551			Public	PUL
SFD1552	Low 16 bits of pulse number per circle		parameters	SE_6
SFD1553	High 16 bits of pulse number per circle			
SFD1554	Low 16 bits of pulse equivalent per circle			
SFD1555	High 16 bits of pulse equivalent per circle			
SFD1556	Pulse direction terminal	Assign the number of terminal Y, 0xFF for no terminal		
SFD1557	Direction delay time	Default 20, unit: ms		
SFD1558	Positive compensation of gear gap	Negative compensation will also use this data when gear gap negative compensation =0		

SFD1559	Negative compensation of gear gap		
SFD1560	Low 16 bits of Electrical origin position		
SFD1561	High 16 bits of Electrical origin position		
SFD1562	Mechanical back to origin parameter setting	Bit0: Switch state setting of near point, 0: Normally ON; 1Normally OFF	
SFD1563	Terminal setting of near point signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1564	Z phase terminal setting	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1565	Limit terminal setting	Bit7~bit0: Assign limit 1 number of terminal X, 0Xff for not terminal Bit15~bit8: Assign limit 2	
		number of terminal X, 0Xff for not terminal	
SFD1566	Terminal setting of origin auxiliary signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1567	Terminal setting of zero clear CLR signal output terminal	Bit0~bit7: Assign the number of terminal Y, 0Xff for not terminal	
SFD1568	Low 16 bits of return speed VH		
SFD1569	High 16 bits of return speed VH		
SFD1570	Low 16 bits of return speed VL		
SFD1571	High 16 bits of return speed VL		

SFD1572	Low 16 bits of crawling speed			
SFD1573	High 16 bits of crawling speed			
SFD1574	Low 16 bits of mechanical origin			
SFD1575	High 16 bits of mechanical origin			
SFD1576	Z phase number			
SFD1577	CLR signal delay time	Default 20, unit: ms		
SFD1600	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD1601	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD1602	Accelerating time of pulse default speed			
SFD1603	Decelerating time of pulse default speed			
SFD1604	Acc and Dec time of tween			
SFD1605	Reserved		First set of	
SFD1606	Low 16 bits of max speed limiting		- parameters	
SFD1607	High 16 bits of max speed limiting			
SFD1608	Low 16 bits of starting speed			
SFD1609	High 16 bits of starting speed			
SFD1610	Low 16 bits of ending speed			
SFD1611	High 16 bits of ending speed			
SFD1620	Low 16 bits of pulse default speed	Only when speed=0, default speed is used to transmit pulse.	Second set of	

SFD1621	High 16 bits of pulse default speed		parameters
SFD1622	Accelerating time of pulse default speed		
SFD1623	Decelerating time of pulse default speed		
SFD1624	Acc and Dec time of tween		
SFD1625	Reserved		
SFD1626	Low 16 bits of max speed limiting		
SFD1627	High 16 bits of max speed limiting		
SFD1628	Low 16 bits of starting speed		
SFD1629	High 16 bits of starting speed		
SFD1630	Low 16 bits of ending speed		
SFD1631	High 16 bits of ending speed		
•••			
SFD1640	Low 16 bits of pulse default speed	Only when speed=0, default	
SFD1641	High 16 bits of pulse default speed	speed is used to transmit pulse.	
SFD1642	Accelerating time of pulse default speed		
SFD1643	Decelerating time of pulse default speed		Third set of
SFD1644	Acc and Dec time of tween		parameters
SFD1645	Reserved		
SFD1646	Low 16 bits of max speed limiting		
SFD1647	High 16 bits of max speed limiting		
SFD1648	Low 16 bits of starting speed		

SFD1649	High 16 bits of starting speed			
SFD1650	Low 16 bits of ending speed			
SFD1651	High 16 bits of ending speed			
SFD1660	Low 16 bits of pulse default speed	Only when speed=0, default speed is used to transmit pulse.	Forth set of parameters	
SFD1661	High 16 bits of pulse default speed			
SFD1662	Accelerating time of pulse default speed			
SFD1663	Decelerating time of pulse default speed			
SFD1664	Acc and Dec time of tween			
SFD1665	Reserved			
SFD1666	Low 16 bits of max speed limiting			
SFD1667	High 16 bits of max speed limiting			
SFD1668	Low 16 bits of starting speed			
SFD1669	High 16 bits of starting speed			
SFD1670	Low 16 bits of ending speed			
SFD1671	High 16 bits of ending speed			
•••				

		Bit 0: logic of pulse output		
		0: positive logic;		
		1: negative logic, default is 0		
		Bit 1: logic of pulse direction		
SFD1680	Pulse parameters setting	0: positive logic;		
		1: negative logic, default is 0		
		Bit 8: pulse unit		
		0: pulse number;		
		1: pulse equivalent, default is 0		
SFD1681				
SFD1682	Low 16 bits of pulse number per circle			
SFD1683	High 16 bits of pulse number per circle		Public parameters	PUL SE_7
SFD1684	Low 16 bits of pulse equivalent per circle			
SFD1685	High 16 bits of pulse equivalent per circle			
SFD1686	Pulse direction terminal	Assign the number of terminal Y, 0xFF for no terminal		
SFD1687	Direction delay time	Default 20, unit: ms		
SFD1688	Positive compensation of gear gap	Negative compensation will also use this data when gear gap negative compensation =0		
SFD1689	Negative compensation of gear gap			
SFD1690	Low 16 bits of Electrical origin position			
SFD1691	High 16 bits of Electrical origin position			

		D:40 C:4-14-14	1	
SFD1692	Mechanical back to origin parameter setting	Bit0: Switch state setting of near point, 0: Normally ON; 1Normally OFF		
SFD1693	Terminal setting of near point signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD1694	Z phase terminal setting	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD1695	Limit terminal setting	Bit7~bit0: Assign limit 1 number of terminal X, 0Xff for not terminal Bit15~bit8: Assign limit 2 number of terminal X, 0Xff for not terminal		
SFD1696	Terminal setting of origin auxiliary signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD1697	Terminal setting of zero clear CLR signal output terminal	Bit0~bit7: Assign the number of terminal Y, 0Xff for not terminal		
SFD1698	Low 16 bits of return speed VH			
SFD1699	High 16 bits of return speed VH			
SFD1700	Low 16 bits of return speed VL			
SFD1701	High 16 bits of return speed VL			
SFD1702	Low 16 bits of crawling speed			
SFD1703	High 16 bits of crawling speed			
SFD1704	Low 16 bits of mechanical origin			
SFD1705	High 16 bits of mechanical origin			

SFD1706	Z phase number		
SFD1707	CLR signal delay time	Default 20, unit: ms	
SFD1730	Low 16 bits of pulse default speed	Only when speed is 0, default	
SFD1731	High 16 bits of pulse default speed	speed is used to transmit pulse.	
SFD1732	Accelerating time of pulse default speed		
SFD1733	Decelerating time of pulse default speed		
SFD1734	Acc and Dec time of tween		
SFD1735	Reserved		First set of
SFD1736	Low 16 bits of max speed limiting		parameters
SFD1737	High 16 bits of max speed limiting		
SFD1738	Low 16 bits of starting speed		
SFD1739	High 16 bits of starting speed		
SFD1740	Low 16 bits of ending speed		
SFD1741	High 16 bits of ending speed		
SFD1750	Low 16 bits of pulse default speed	Only when speed is 0, default speed is used to transmit pulse.	
SFD1751	High 16 bits of pulse default speed		Second set
SFD1752	Accelerating time of pulse default speed		of parameters
SFD1753	Decelerating time of pulse default speed		
SFD1754	Acc and Dec time of tween		

SFD1755	Reserved			
SFD1756	Low 16 bits of max speed limiting			
SFD1757	High 16 bits of max speed limiting			
SFD1758	Low 16 bits of starting speed			
SFD1759	High 16 bits of starting speed			
SFD1760	Low 16 bits of ending speed			
SFD1761	High 16 bits of ending speed			
•••				
SFD1770	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD1771	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD1772	Accelerating time of pulse default speed			
SFD1773	Decelerating time of pulse default speed			
SFD1774	Acc and Dec time of tween			
SFD1775	Reserved		Third set of	
SFD1776	Low 16 bits of max speed limiting		parameters	
SFD1777	High 16 bits of max speed limiting			
SFD1778	Low 16 bits of starting speed			
SFD1779	High 16 bits of starting speed			
SFD1780	Low 16 bits of ending speed			
SFD1781	High 16 bits of ending speed			
SFD1790	Low 16 bits of pulse default speed	Only when speed=0, default speed is used to transmit pulse.	Forth set of	

SFD1791	High 16 bits of pulse default speed		parameters	
SFD1792	Accelerating time of pulse default speed			
SFD1793	Decelerating time of pulse default speed			
SFD1794	Acc and Dec time of tween			
SFD1795	Reserved			
SFD1796	Low 16 bits of max speed limiting			
SFD1797	High 16 bits of max speed limiting			
SFD1798	Low 16 bits of starting speed			
SFD1799	High 16 bits of starting speed			
SFD1800	Low 16 bits of ending speed			
SFD1801	High 16 bits of ending speed			
SFD1810	Pulse parameters setting	Bit 0: logic of pulse output 0: positive logic; 1: negative logic, default is 0 Bit 1: logic of pulse direction 0: positive logic; 1: negative logic, default is 0 Bit 8: pulse unit 0: pulse number; 1: pulse equivalent, default is 0	Public parameters	PUL SE_8
SFD1811				
SFD1812	Low 16 bits of pulse number per circle			

SFD1813	High 16 bits of pulse number per circle		
SFD1814	Low 16 bits of pulse equivalent per circle		
SFD1815	High 16 bits of pulse equivalent per circle		
SFD1816	Pulse direction terminal	Assign the number of terminal Y, 0xFF for no terminal	
SFD1817	Direction delay time	Default 20, unit: ms	
SFD1818	Positive compensation of gear gap	Negative compensation will also use this data when gear gap negative compensation =0	
SFD1819	Negative compensation of gear gap		
SFD1820	Low 16 bits of Electrical origin position		
SFD1821	High 16 bits of Electrical origin position		
SFD1822	Mechanical back to origin parameter setting	Bit0: Switch state setting of near point, 0: Normally ON; 1Normally OFF	
SFD1823	Terminal setting of near point signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1824	Z phase terminal setting	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1825	Limit terminal setting	Bit7~bit0: Assign limit 1 number of terminal X, 0Xff for not terminal Bit15~bit8: Assign limit 2 number of terminal X, 0Xff for not terminal	

SFD1826	Terminal setting of origin auxiliary signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1827	Terminal setting of zero clear CLR signal output terminal	Bit0~bit7: Assign the number of terminal Y, 0Xff for not terminal	
SFD1828	Low 16 bits of return speed VH		
SFD1829	High 16 bits of return speed VH		
SFD1830	Low 16 bits of return speed VL		
SFD1831	High 16 bits of return speed VL		
SFD1832	Low 16 bits of crawling speed		
SFD1833	High 16 bits of crawling speed		
SFD1834	Low 16 bits of mechanical origin		
SFD1835	High 16 bits of mechanical origin		
SFD1836	Z phase number		
SFD1837	CLR signal delay time	Default 20, unit: ms	
SFD1860	Low 16 bits of pulse default speed	Only when speed=0, default	
SFD1861	High 16 bits of pulse default speed	speed is used to transmit pulse.	
SFD1862	Accelerating time of pulse default speed		First set of parameters
SFD1863	Decelerating time of pulse default speed		
SFD1864	Acc and Dec time of tween		
SFD1865	Reserved		

SFD1866	Low 16 bits of max speed limiting			
SFD1867	High 16 bits of max speed limiting			
SFD1868	Low 16 bits of starting speed			
SFD1869	High 16 bits of starting speed			
SFD1870	Low 16 bits of ending speed			
SFD1871	High 16 bits of ending speed			
•••				
SFD1880	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD1881	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD1882	Accelerating time of pulse default speed			
SFD1883	Decelerating time of pulse default speed			
SFD1884	Acc and Dec time of tween			
SFD1885	Reserved		Second set of	
SFD1886	Low 16 bits of max speed limiting		parameters	
SFD1887	High 16 bits of max speed limiting			
SFD1888	Low 16 bits of starting speed		-	
SFD1889	High 16 bits of starting speed			
SFD1890	Low 16 bits of ending speed			
SFD1891	High 16 bits of ending speed			
SFD1900	Low 16 bits of pulse default speed	Only when speed=0, default speed is used to transmit pulse.	Third set of	

SFD1901	High 16 bits of pulse default speed		parameters
SFD1902	Accelerating time of pulse default speed		
SFD1903	Decelerating time of pulse default speed		
SFD1904	Acc and Dec time of tween		
SFD1905	Reserved		
SFD1906	Low 16 bits of max speed limiting		
SFD1907	High 16 bits of max speed limiting		
SFD1908	Low 16 bits of starting speed		
SFD1909	High 16 bits of starting speed		
SFD1910	Low 16 bits of ending speed		
SFD1911	High 16 bits of ending speed		
SFD1920	Low 16 bits of pulse default speed	Only when speed=0, default	
SFD1921	High 16 bits of pulse default speed	speed is used to transmit pulse.	
SFD1922	Accelerating time of pulse default speed		
SFD1923	Decelerating time of pulse default speed		Forth set of
SFD1924	Acc and Dec time of tween		parameters
SFD1925	Reserved		
SFD1926	Low 16 bits of max speed limiting		
SFD1927	High 16 bits of max speed limiting		
SFD1928	Low 16 bits of starting speed		

SFD1929	High 16 bits of starting speed			
SFD1930	Low 16 bits of ending speed			
SFD1931	High 16 bits of ending speed			
•••				
SFD1940	Pulse parameters setting	Bit 0: logic of pulse output 0: positive logic; 1: negative logic, default is 0 Bit 1: logic of pulse direction 0: positive logic; 1: negative logic, default is 0 Bit 8: pulse unit 0: pulse number; 1: pulse equivalent, default is 0		
SFD1941			Public	PUL
SFD1942	Low 16 bits of pulse number per circle		parameters	SE_9
SFD1943	High 16 bits of pulse number per circle			
SFD1944	Low 16 bits of pulse equivalent per circle			
SFD1945	High 16 bits of pulse equivalent per circle			
SFD1946	Pulse direction terminal	Assign the number of terminal Y, 0xFF for no terminal		
SFD1947	Direction delay time	Default 20, unit: ms		
SFD1948	Positive compensation of gear gap	Negative compensation will also use this data when gear gap negative compensation =0		

SFD1949	Negative compensation of gear gap		
SFD1950	Low 16 bits of Electrical origin position		
SFD1951	High 16 bits of Electrical origin position		
SFD1952	Mechanical back to origin parameter setting	Bit0: Switch state setting of near point, 0: Normally ON; 1Normally OFF	
SFD1953	Terminal setting of near point signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1954	Z phase terminal setting	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1955	Limit terminal setting	Bit7~bit0: Assign limit 1 number of terminal X, 0Xff for not terminal Bit15~bit8: Assign limit 2	
		number of terminal X, 0Xff for not terminal	
SFD1956	Terminal setting of origin auxiliary signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal	
SFD1957	Terminal setting of zero clear CLR signal output terminal	Bit0~bit7: Assign the number of terminal Y, 0Xff for not terminal	
SFD1958	Low 16 bits of return speed VH		
SFD1959	High 16 bits of return speed VH		
SFD1960	Low 16 bits of return speed VL		
SFD1961	High 16 bits of return speed VL		

SFD1962	Low 16 bits of crawling speed			
SFD1963	High 16 bits of crawling speed			
SFD1964	Low 16 bits of mechanical origin			
SFD1965	High 16 bits of mechanical origin			
SFD1966	Z phase number			
SFD1967	CLR signal delay time	Default 20, unit: ms		
SFD1990	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD1991	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD1992	Accelerating time of pulse default speed			
SFD1993	Decelerating time of pulse default speed			
SFD1994	Acc and Dec time of tween			
SFD1995	Reserved		First set of	
SFD1996	Low 16 bits of max speed limiting		parameters	
SFD1997	High 16 bits of max speed limiting			
SFD1998	Low 16 bits of starting speed			
SFD1999	High 16 bits of starting speed			
SFD2000	Low 16 bits of ending speed			
SFD2001	High 16 bits of ending speed			
SFD2010	Low 16 bits of pulse default speed	Only when speed=0, default speed is used to transmit pulse.	Second set of	

SFD2011	High 16 bits of pulse default speed		parameters	
SFD2012	Accelerating time of pulse default speed			
SFD2013	Decelerating time of pulse default speed			
SFD2014	Acc and Dec time of tween			
SFD2015	Reserved			
SFD2016	Low 16 bits of max speed limiting			
SFD2017	High 16 bits of max speed limiting			
SFD2018	Low 16 bits of starting speed			
SFD2019	High 16 bits of starting speed			
SFD2020	Low 16 bits of ending speed			
SFD2021	High 16 bits of ending speed			
SFD2030	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD2031	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD2032	Accelerating time of pulse default speed			
SFD2033	Decelerating time of pulse default speed		Third set of	
SFD2034	Acc and Dec time of tween		parameters	
SFD2035	Reserved			
SFD2036	Low 16 bits of max speed limiting			
SFD2037	High 16 bits of max speed limiting			
SFD2038	Low 16 bits of starting speed			

SFD2039	High 16 bits of starting speed			
SFD2040	Low 16 bits of ending speed			
SFD2041	High 16 bits of ending speed			
•••				
SFD2050	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD2051	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD2052	Accelerating time of pulse default speed			
SFD2053	Decelerating time of pulse default speed			
SFD2054	Acc and Dec time of tween			
SFD2055	Reserved		Forth set of	
SFD2056	Low 16 bits of max speed limiting		parameters	
SFD2057	High 16 bits of max speed limiting			
SFD2058	Low 16 bits of starting speed			
SFD2059	High 16 bits of starting speed		1	
SFD2060	Low 16 bits of ending speed		-	
SFD2061	High 16 bits of ending speed			
•••				

		Bit 0: logic of pulse output		
		0: positive logic;		
		1: negative logic, default is 0		
		Bit 1: logic of pulse direction		
SFD2070	Pulse parameters setting	0: positive logic;		
		1: negative logic, default is 0		
		Bit 8: pulse unit		
		0: pulse number;		
		1: pulse equivalent, default is 0		
SFD2071				
SFD2072	Low 16 bits of pulse number per circle			
SFD2073	High 16 bits of pulse number per circle		Public parameters	PUL SE_1 0
SFD2074	Low 16 bits of pulse equivalent per circle			
SFD2075	High 16 bits of pulse equivalent per circle			
SFD2076	Pulse direction terminal	Assign the number of terminal Y, 0xFF for no terminal		
SFD2077	Direction delay time	Default 20, unit: ms		
SFD2078	Positive compensation of gear gap	Negative compensation will also use this data when gear gap negative compensation =0		
SFD2079	Negative compensation of gear gap			
SFD2080	Low 16 bits of Electrical origin position			
SFD2081	High 16 bits of Electrical origin position			

		D:40 C:4-14-14	T	
SFD2082	Mechanical back to origin parameter setting	Bit0: Switch state setting of near point, 0: Normally ON; 1Normally OFF		
SFD2083	Terminal setting of near point signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD2084	Z phase terminal setting	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD2085	Limit terminal setting	Bit7~bit0: Assign limit 1 number of terminal X, 0Xff for not terminal Bit15~bit8: Assign limit 2 number of terminal X, 0Xff for not terminal		
SFD2086	Terminal setting of origin auxiliary signal	Bit0~bit7: Assign the number of terminal X, 0Xff for not terminal		
SFD2087	Terminal setting of zero clear CLR signal output terminal	Bit0~bit7: Assign the number of terminal Y, 0Xff for not terminal		
SFD2088	Low 16 bits of return speed VH			
SFD2089	High 16 bits of return speed VH			
SFD2090	Low 16 bits of return speed VL			
SFD2091	High 16 bits of return speed VL			
SFD2092	Low 16 bits of crawling speed		1	
SFD2093	High 16 bits of crawling speed			
SFD2094	Low 16 bits of mechanical origin			
SFD2095	High 16 bits of mechanical origin			

SFD2096	Z phase number		
SFD2097	CLR signal delay time	Default 20, unit: ms	
SFD2120	Low 16 bits of pulse default speed	Only when speed is 0, default speed is used to transmit pulse.	
SFD2121	High 16 bits of pulse default speed		
SFD2122	Accelerating time of pulse default speed		
SFD2123	Decelerating time of pulse default speed		
SFD2124	Acc and Dec time of tween		
SFD2125	Reserved		First set of
SFD2126	Low 16 bits of max speed limiting		parameters
SFD2127	High 16 bits of max speed limiting		
SFD2128	Low 16 bits of starting speed		
SFD2129	High 16 bits of starting speed		
SFD2130	Low 16 bits of ending speed		
SFD2131	High 16 bits of ending speed		
•••			
SFD2140	Low 16 bits of pulse default speed	Only when speed=0, default speed is used to transmit pulse.	
SFD2141	High 16 bits of pulse default speed		Second set
SFD2142	Accelerating time of pulse default speed		of parameters
SFD2143	Decelerating time of pulse default speed		
SFD2144	Acc and Dec time of tween		

SFD2145	Reserved			
SFD2146	Low 16 bits of max speed limiting			
SFD2147	High 16 bits of max speed limiting			
SFD2148	Low 16 bits of starting speed		-	
SFD2149	High 16 bits of starting speed		-	
SFD2150	Low 16 bits of ending speed			
SFD2151	High 16 bits of ending speed		-	
•••				
SFD2160	Low 16 bits of pulse default speed	Only when speed=0, default		
SFD2161	High 16 bits of pulse default speed	speed is used to transmit pulse.		
SFD2162	Accelerating time of pulse default speed			
SFD2163	Decelerating time of pulse default speed			
SFD2164	Acc and Dec time of tween		-	
SFD2165	Reserved		Third set of	
SFD2166	Low 16 bits of max speed limiting		parameters	
SFD2167	High 16 bits of max speed limiting			
SFD2168	Low 16 bits of starting speed		-	
SFD2169	High 16 bits of starting speed		1	
SFD2170	Low 16 bits of ending speed		1	
SFD2171	High 16 bits of ending speed		1	
•••				
SFD2180	Low 16 bits of pulse default speed	Only when speed=0, default speed is used to transmit pulse.	Forth set of	

SFD2181	High 16 bits of pulse default speed	parameters	
SFD2182	Accelerating time of pulse default speed		
SFD2183	Decelerating time of pulse default speed		
SFD2184	Acc and Dec time of tween		
SFD2185	Reserved		
SFD2186	Low 16 bits of max speed limiting		
SFD2187	High 16 bits of max speed limiting		
SFD2188	Low 16 bits of starting speed		
SFD2189	High 16 bits of starting speed		
SFD2190	Low 16 bits of ending speed		
SFD2191	High 16 bits of ending speed		

WUXI XINJE ELECTRIC CO., LTD.

4th Floor Building 7,No. 100 Dicui Road,Wuxi, China

214072

Tel: (510) 85134139

Fax: (510) 85111290

Email: cheerfiona@gmail.com

Web: www.xinje.com