1 Functions and characteristics

- Basic functions: add-count, subtract-count, add-subtract-count

- Various sensors can be connected: photoelectric coupler, proximity switch, linear displacement grating sensor, encoder, etc
- Six-bit LED display: - 1999-9999, decimal point position arbitrary settings;
- Five input modes and twelve output modes;
- With power failure memory function, memory/memory can be set.

2 Main technical specifications

Display mode	Red high brightness digital tube (word height 14.2 mm)	Sensor Power	$12 \mathrm{VDC} \pm 5 \%, 60 \mathrm{~mA}$
Range	-199999 ~ 999999, Decimal point position can be set	Relay output	```Output mode: N, F, C, R, K1, P, Q, A, K2, D, L, H Delay range: 0.01 ~ 99.99s 0r keep output contact rating: 2A/250VAC/30VDC(Resistive load) Switch delay: \leqslant10ms```
Limit display	HHHHHH, LLLLLL		
Input	UP, DOWN, UP/DOWN A B C,		
Counting speed	A total of three levels of settings: $30 \mathrm{~Hz} / 1 \mathrm{kHz} / 30 \mathrm{kHz}$, on-off ratio $1: 1$ The maximum speed of UP/DOWN-C mode is 15 kHz		
Input signal	$\mathrm{IN}-1, \quad \mathrm{IN}-2, \quad \mathrm{RST}$ High level 4-30V, low level 0-1V	Power	85-264VAC $50 / 60 \mathrm{~Hz}$ consumption $\leqslant 4 \mathrm{~W}$
Power failure memory	EEPROM, 100, 000 erases	Use environmen t	Temperature 0-50 C, relative humidity less than 85% RH

4 Panel and key operation

(5) data \gg : switch : increase and reset

Functional parameters are distributed in operation menu, engineer menu and configuration menu. The entry method of each menu is described in the following figure.

After entering the menu, press \subset Select the parameters that need to be modified, press \gg Enter the Modified State, press \gg and 人 Changing parameter values, press \subset ? The changed parameter values are stored in memory and the parameter symbols are redisplayed

When setting parameters, the button is not pressed within 10 seconds, and will automatically return to the measurement display state. The parameter values being modified will not be saved

(1)(2)The position of output parameters is determined by the value of UF parameters.

5 Parameter description

Code	Name	Set range	Default	Explain
OUt OUT1	Set 1	-199999 ~999999	1000	When the current value reaches the set value of 1 , output according to the corresponding output mode OUT1 signal
$\begin{aligned} & \text { tiñ } \\ & \text { TIM1 } \end{aligned}$	OUT1 Delay Time	$0.00 \sim 99.99 \mathrm{~s}$	0.00s	Output duration of OUT1 set to 0
$\begin{aligned} & \text { oUL? } \\ & \text { OUT2 } \end{aligned}$	Set 2	-199999 ~999999	2000	When the current value reaches the set value of 2 , OUT2 outputs the signal according to the corresponding output mode.
$\begin{gathered} \qquad \text { tiñ } \\ \text { TIM2 } \end{gathered}$	OUT2 Delay Time	$0.01 \sim 99.99 \mathrm{~s}$	0.50s	OUT2 Output duration
out OUTM	Output mode	$\begin{aligned} & \text { N, F, C, R, K1, P, } \\ & \text { Q, A, K2, D, L, H } \end{aligned}$	F	See "8. Output mode"
$0 E \cap 1$ OTN1	OUT10utput Logic Reverse	OFF, ON	OFF	OFF: Output Conduction when Count Value reaches Set Value
otn? OTN2	OUT2Output Logic Reverse	OFF, ON	OFF	ON: Output disconnection when count value reaches set value
8 A	Rate A	$1 \sim 999999$	1	
\bar{E} E	Rate E	$0 \sim 9$	0	
$d P$ DP	Decimal point position		0	Decimal Point Position of Counting Value and Decimal Point Position of Related Parameters

Code	Name	Set range	Default	Explain
$\bar{n} E \bar{n}$ MEMO	failure memory	OFF，ON	ON	OFF：No Memory of Blackout ON：Memorize counting values and output status before power outage
$1 \cap P \bar{n}$ INPM	Input mode	UP， DOWN ， UD－A，UD－B， UD－C	UD－B	UD－A：UP／DOWN A UD－B：UP／DOWN B UD－C：UP／DOWN C See＂ 7 ．Input mode and count value＂
$F r 9 i$ FRQL	Counting speed	LO，MD，HI	LO	Frequency range allowed by counter When no voltage contacts are input，LO should be set．
$\begin{aligned} & n-n \\ & \mathrm{IN}-\mathrm{N} \end{aligned}$	Input IN－1，IN－2 Logical reverse	OFF，ON	ON	OFF：Rising edge counting or high level validity ON：Descent edge counting or low level validity
$\begin{gathered} \text { r } \mathrm{H}-\mathrm{n} \\ \mathrm{RH}-\mathrm{N} \end{gathered}$	Input RST Logical reverse	OFF，ON	ON	When there is no voltage contact input，it should be set to ON．
$r 5 t t$ RSTT	Input RST width	1 ms ，20ms	20 ms	Minimum width of external reset signal
$\begin{aligned} & U F \\ & U F \end{aligned}$	Output parameter position	$0 \sim 2$	0	0：data OUT1，TIM1，OUT2，TIM2 Place it in the action menu 1：data OUT1，OUT2 Place it in the action menu TIM1，TIM2 Place it in the action menu 2：data OUT1，TIM1，OUT2，TIM Place it in the action menu
UE VER	Software version	－	－	Display Instrument Software Version，Can＇t be Modified

（1）ex：use 512P／R code，Perimeter（2）FRQL

$$
200 \mathrm{~mm} \text { 。Rate }=\frac{200}{512}=0.390 \epsilon
$$

Set：$A=390625, E=6, D P=2$

参数值	输入频率范围	导通／断开脉冲宽度
HI	$0 \sim 30 \mathrm{kHz}(15 \mathrm{kHz})$	最小 $16 \mu \mathrm{~s}$
MD	$0 \sim 1 \mathrm{kHz}$	最小 $480 \mu \mathrm{~s}$
LO	$0 \sim 30 \mathrm{~Hz}$	最小 16 ms

$\left(\frac{\mathrm{A}}{10^{\mathrm{E}}}=\frac{390625}{10^{6}}=0.390625\right)$

When the input mode is UP／DOWN C，the input frequency of HI ranges from 0 kHz to 15 kHz ．

In other input modes， HI input frequency ranges from 0 to 30 kHz ．

\square Fixed time/hold output optional $\quad \square \quad$ Maintain output $\square \quad$ Fixed-time output \quad Equal output

Out	Input mode			After the count value reaches the set value 2
	UP	DOWN	UP/DOWN A.B.C	
N				The count remains until the reset signal arrives
F				The counter continues to count until the reset signal arrives.
C				Counting values immediately return to reset start state, OUT2 output delay Close simultaneously with OUT1 self-retaining output
R				The counting value is maintained during the OUT2 output time, and then returns to the reset start state. The OUT2 output and OUT1 self-retaining output are closed at the same time
K1				The counter continues to count, the output delay of OUT2 and OUT1 are closed at the same time, and the count is restarted after the reset signal arrives.

P				The display value is maintained, the actual count value immediately returns to the reset start state, and the OUT2 output delays and OUT1 self-maintained output are closed at the same time.
Q				The counter continues to count. After the OUT2 output delay, the count value immediately returns to the reset start state. OUT1 keeps the output and closes at the same time.
A				The count value remains until the reset signal arrives

Out	Input mode	Notes
	UP/Down A.b.C	
K2		When the count value equals the set value, the output is delayed.
D		When the count value equals the set value, the output will be closed immediately when the count value is not equal to the set value.

（29999

8 Wiring instructions

The arrangement of instrument terminals is shown as follows：

＊The instrument is equipped with NPN sensor．If you need to use PNP sensor，please contact the company for customization．

The connection mode of reset input RST is the same as $\mathrm{IN}-1$（IN－2）．

In－1，IN－2 and RST input terminals are internally connected with pull－up resistors，so when the terminals are not connected（suspended），the input is in a high level state．

